Physics 310 Notes on Coordinate Systems and Unit Vectors

A general system of coordinates uses a set of parameters to define a vector. For example, x, y and z are the parameters that define a vector \boldsymbol{r} in Cartesian coordinates:

$$
\begin{equation*}
\boldsymbol{r}=\hat{\boldsymbol{\imath}} x+\hat{\boldsymbol{\jmath}} y+\hat{\boldsymbol{k}} z \tag{1}
\end{equation*}
$$

Similarly a vector in cylindrical polar coordinates is described in terms of the parameters r, θ and z since a vector \boldsymbol{r} can be written as $\boldsymbol{r}=r \hat{\boldsymbol{r}}+z \hat{\boldsymbol{k}}$. The dependence on θ is not obvious here, but the unit vector $\hat{\boldsymbol{r}}$ is actually a function of the polar angle, θ. If you want, you can make this dependence explicit by writing

$$
\begin{equation*}
\boldsymbol{r}=r \hat{\boldsymbol{r}}(\theta)+\hat{\boldsymbol{k}} z \tag{2}
\end{equation*}
$$

Finally, a vector in spherical coordinates is described in terms of the parameters r, the polar angle θ and the azimuthal angle ϕ as follows:

$$
\begin{equation*}
\boldsymbol{r}=r \hat{\boldsymbol{r}}(\theta, \phi) \tag{3}
\end{equation*}
$$

where the dependence of the unit vector $\hat{\boldsymbol{r}}$ on the parameters θ and ϕ has been made explicit.
It can be very useful to express the unit vectors in these various coordinate systems in terms of their components in a Cartesian coordinate system. For example, in cylindrical polar coordinates,

$$
\begin{align*}
x & =r \cos \theta \\
y & =r \sin \theta \tag{4}\\
z & =z
\end{align*}
$$

while in spherical coordinates

$$
\begin{align*}
x & =r \sin \theta \cos \phi \\
y & =r \sin \theta \sin \phi \tag{5}\\
z & =r \cos \theta .
\end{align*}
$$

Using these representations, we can construct the components of all unit vectors in these coordinate systems and in this way define explicitly the unit vectors $\hat{\boldsymbol{r}}, \hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}$, etc.

If a vector, \boldsymbol{r} depends on a parameters u, then a vector that points in the "direction" of increasing u is defined by

$$
\begin{equation*}
\boldsymbol{e}_{u}=\frac{\partial \boldsymbol{r}}{\partial u} . \tag{6}
\end{equation*}
$$

This vector is not necessarily normalized to have unit length, but from it we can always construct the unit vector

$$
\begin{equation*}
\hat{\boldsymbol{e}}_{u}=\frac{\boldsymbol{e}_{u}}{\left|\boldsymbol{e}_{u}\right|} \tag{7}
\end{equation*}
$$

We will apply this definition to the Cartesian, cylindrical and spherical coordinate systems to illustrate the construction of their unit vectors.

The case of Cartesian coordinates is almost trivial:

$$
\begin{align*}
\boldsymbol{e}_{x} & =\frac{\partial \boldsymbol{r}}{\partial x}=\hat{\boldsymbol{\imath}} \tag{8}\\
\boldsymbol{e}_{y} & =\frac{\partial \boldsymbol{r}}{\partial y}=\hat{\boldsymbol{\jmath}} \tag{9}\\
\boldsymbol{e}_{z} & =\frac{\partial \boldsymbol{r}}{\partial z}=\hat{\boldsymbol{k}} \tag{10}
\end{align*}
$$

It also turns out that each of these vectors is already normalized to have unit length.
In the case of cylindrical polar coordinates, using Equations 2 and 4,

$$
\begin{align*}
\boldsymbol{e}_{r} & =\frac{\partial \boldsymbol{r}}{\partial r}=\hat{\boldsymbol{r}}(\theta) \\
& =\hat{\boldsymbol{\imath}} \cos \theta+\hat{\boldsymbol{\jmath}} \sin \theta, \tag{11}\\
\boldsymbol{e}_{\theta} & =\frac{\partial \boldsymbol{r}}{\partial \theta}=r \frac{\partial \hat{\boldsymbol{r}}}{\partial \theta} \\
& =-\hat{\boldsymbol{\imath}} r \sin \theta+\hat{\boldsymbol{\jmath}} r \cos \theta, \tag{12}\\
\boldsymbol{e}_{z} & =\frac{\partial \boldsymbol{r}}{\partial z}=\boldsymbol{k} \tag{13}
\end{align*}
$$

The unit vectors $\hat{\boldsymbol{r}}$ and $\hat{\boldsymbol{\theta}}$ are the constructed using Equation 7 as follows:

$$
\begin{align*}
\hat{\boldsymbol{r}} & =\frac{\boldsymbol{e}_{r}}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}=\boldsymbol{e}_{r} \tag{14}\\
\hat{\boldsymbol{\theta}} & =\frac{\boldsymbol{e}_{\theta}}{r \sqrt{\sin ^{2} \theta+\cos ^{2} \theta}}=\frac{\boldsymbol{e}_{\theta}}{r} \tag{15}
\end{align*}
$$

so it turns out that \boldsymbol{e}_{r} was already normalized to unit length.
For the last example, in spherical coordinates, using Equations 3 and 5,

$$
\begin{align*}
\boldsymbol{e}_{r} & =\frac{\partial \boldsymbol{r}}{\partial r}=\hat{\boldsymbol{r}}(\theta, \phi) \\
& =\hat{\boldsymbol{\imath}} \sin \theta \cos \phi+\hat{\boldsymbol{\jmath}} \sin \theta \sin \phi+\hat{\boldsymbol{k}} \cos \theta \tag{16}
\end{align*}
$$

$$
\begin{align*}
\boldsymbol{e}_{\phi} & =\frac{\partial \boldsymbol{r}}{\partial \phi}=r \frac{\partial \hat{\boldsymbol{r}}}{\partial \phi} \\
& =-\hat{\boldsymbol{\imath}} r \sin \theta \sin \phi+\hat{\boldsymbol{\jmath}} r \sin \theta \cos \phi \tag{17}\\
\boldsymbol{e}_{\theta} & =\frac{\partial \boldsymbol{r}}{\partial \theta}=r \frac{\partial \hat{\boldsymbol{r}}}{\partial \theta} \\
& =\hat{\boldsymbol{\imath}} r \cos \theta \cos \phi+\hat{\boldsymbol{\jmath}} r \cos \theta \sin \phi-\hat{\boldsymbol{k}} r \sin \theta \tag{18}
\end{align*}
$$

The unit vectors $\hat{\boldsymbol{r}}, \hat{\boldsymbol{\phi}}$ and $\hat{\boldsymbol{\theta}}$ are the constructed using Equation 7 as follows:

$$
\begin{align*}
\hat{\boldsymbol{r}} & =\frac{\boldsymbol{e}_{r}}{\sqrt{\sin ^{2} \theta\left(\sin ^{2} \phi+\cos ^{2} \phi\right)+\cos ^{2} \theta}}=\frac{\boldsymbol{e}_{r}}{\sqrt{\sin ^{2} \theta+\cos ^{2} \theta}}=\boldsymbol{e}_{r} \tag{19}\\
\hat{\boldsymbol{\phi}} & =\frac{\boldsymbol{e}_{\phi}}{r \sin \theta \sqrt{\sin ^{2} \phi+\cos ^{2} \phi}}=\frac{\boldsymbol{e}_{\phi}}{r \sin \theta} \tag{20}\\
\hat{\boldsymbol{\theta}} & =\frac{\boldsymbol{e}_{\theta}}{r \sqrt{\sin ^{2} \theta\left(\sin ^{2} \phi+\cos ^{2} \phi\right)+\cos ^{2} \theta}}=\frac{\boldsymbol{e}_{\theta}}{r \sqrt{\sin ^{2} \theta+\cos ^{2} \theta}}=\frac{\boldsymbol{e}_{\theta}}{r} \tag{21}
\end{align*}
$$

so it turns out that \boldsymbol{e}_{r} was already normalized to unit length. From Equation 20 you can see that the direction of $\hat{\boldsymbol{\phi}}$ becomes completely undefined when $\theta=0$ or $\theta=\pi$.

We usually express time derivatives of the unit vectors in a particular coordinate system in terms of the unit vectors themselves. Since all unit vectors in a Cartesian coordinate system are constant, their time derivatives vanish, but in the case of polar and spherical coordinates they do not.

In polar coordinates,

$$
\begin{align*}
\frac{d \hat{\boldsymbol{r}}}{d t} & =(-\hat{\boldsymbol{\imath}} \sin \theta+\hat{\boldsymbol{\jmath}} \cos \theta) \frac{d \theta}{d t}=\hat{\boldsymbol{\theta}} \dot{\theta} \tag{22}\\
\frac{d \hat{\boldsymbol{\theta}}}{d t} & =(-\hat{\boldsymbol{\imath}} \cos \theta-\hat{\boldsymbol{\jmath}} \sin \theta) \frac{d \theta}{d t}=-\hat{\boldsymbol{r}} \dot{\theta} \tag{23}
\end{align*}
$$

In spherical coordinates,

$$
\begin{align*}
\frac{d \hat{\boldsymbol{r}}}{d t} & =\frac{d \hat{\boldsymbol{r}}}{d \theta} \frac{d \theta}{d t}+\frac{d \hat{\boldsymbol{r}}}{d \phi} \frac{d \phi}{d t} \\
& =(\hat{\boldsymbol{\imath}} \cos \theta \cos \phi+\hat{\boldsymbol{\jmath}} \cos \theta \sin \phi-\hat{\boldsymbol{k}} \sin \theta) \frac{d \theta}{d t}+(-\hat{\boldsymbol{\imath}} \sin \theta \sin \phi+\hat{\boldsymbol{\jmath}} \sin \theta \cos \phi) \frac{d \phi}{d t} \\
& =\hat{\boldsymbol{\theta}} \dot{\theta}+\hat{\boldsymbol{\phi}} \sin \theta \dot{\phi} \tag{24}\\
\frac{d \hat{\boldsymbol{\phi}}}{d t} & =-\hat{\boldsymbol{r}} \dot{\phi} \sin \theta-\hat{\boldsymbol{\phi}} \dot{\phi} \cos \theta \tag{25}\\
\frac{d \hat{\boldsymbol{\theta}}}{d t} & =-\hat{\boldsymbol{r}} \dot{\theta}+\hat{\boldsymbol{\phi}} \dot{\phi} \cos \theta \tag{26}
\end{align*}
$$

