Errata for "Computational Physics" 2nd Edition by Giordano and Nakanishi

Where	Incorrect	Correct
p.23, in the caption for Fig.2.2	The drag coefficient was 0.5.	The drag coefficient was 1.
p.27, bottom 2 lines	$F_{drag,x} = -(B_2 / m)vv_{x,i}, F_{drag,y} = -(B_2 / m)vv_{y,i}$	$F_{drag,x} = -B_2 v v_{x,i}, F_{drag,y} = -B_2 v v_{y,i}$
p.45, 7 th line	$C \approx 1/2$	$C \approx 1$
p.45, lines 8 and 12	7.0/v	14.0/ <i>v</i>
p.45, 12 th & last lines, p.46, line 2 in Ex.2.24	C = 1/2	<i>C</i> = 1
p.45, Eq.(2.34)	$F_{drag} = -C\rho A v^2$	$F_{drag} = -(1/2)C\rho Av^2$
p.48, just before Eq.(3.1)	The parallel forces add to zero since	The net parallel force provides the centripetal acceleration
	we assume that the string break,	to keep the pendulum motion in a circular arc,
p.49, 4 th line from top	the string	the string and θ is measured in radians
p.58, line 3 of Example 3.3	$-[(g/l)\sin\theta_i$	+[-(g/l) sin θ_i
p.98, last row of Table 4.1	$\sim 6.0 \times 10^{24}$	1.3×10^{22}
p.125, just below Eq.(4.25)	$I = m_1 r_1 ^2 + m_2 r_2 ^2$ is the moment of	$I = m_1 d_1^2 + m_2 d_2^2$ is the moment of inertia and d_1 and d_2 are
	inertia	distances measured from the center of mass of the two
		particles to each particle
p.131, line 6 from top and paragraph 2 line 5	Fig. 12.47	Fig. 5.1
p.138, paragraph 3 line 2	Fig. 12.47	Fig. 5.1
p.157, Eq.(6.4)	ho on the extreme right	μ
p.193, lines 3 and 10	Table 7.3	Table 7.1
p.194, in Eq.(7.11)	=	∞
p.196, in Eq.(7.20)	=	=D (i.e., insert D to right of "=")
p.220, within 4 th bullet of Example 7.4	Text in 2 nd tertiary (dot) bullet	This text should have appeared in a box.
p.221, just above Example 7.5	the box in Example 7.8	the box in Example 7.4
p.225, just after Example 7.6	in Example 7.3	in Example 7.2
p.229, 4 th line from bottom	consequence effect	consequence
p.265, just below Eq.(8.32)	$t \equiv 1 - zJ / k_B T = (T - T_C) / T_C$	$t \equiv 1 - zJ / k_B T \cong (T - T_C) / T_C$
p.274, 3 rd line from bottom	$1.8 \times 10^{-12} \text{ s}$	$2.2 \times 10^{-12} m s$
p.277, last line of paragraph 1.	for sin $\theta_{k,j}$	(delete)

p.280, in Eq.(9.9)	v^2/k_BT	v/k_BT
p.296, in Eq.(9.17) (two places)	$1/(\Delta t)^2, \beta/(\Delta t)^2$	$(\Delta t)^2, eta(\Delta t)^2$
p.311, 2 nd bullet in Example 10.1	$\psi_0 = \psi_{-1} = 0$	$\psi_0 = \psi_{-1} = 1$
p.317, in caption for Fig. 10.8	for $E = -1.969$ the derivatives match	for $E = -1.969$ the derivatives match better. The best
	fairly well, so this is an acceptable	match for this case is obtained for about $E=-1.890$; so
	approximation	that is an acceptable approximation
p.327, in 3 rd line	(10.17)	(10.18)
p.335, in Eq.(10.41)	$-(\Delta t)V(x)I(x,t+\Delta t/2)$	$+(\Delta t)V(x)I(x,t+\Delta t/2)$
p.339, in 3 rd sentence of caption for Fig. 10.17	<i>x=1</i> .	<i>x=1</i> in the Crank-Nicholson method.
p.345, in Eq.(10.56), last line	$\dots + R(x, y + \Delta x, t) + \dots$	$\dots + R(x, y + \Delta y, t) + \dots$
p.384, in 2 nd line of Eq.(11.31)	$p(i, n+1) = p(i, n-1) - \dots$	$p(i, n+1) = p(i, n) - \dots$
p.440, in 2 nd line of Eq.(12.23)	$e^{-V/20}$	$e^{-V/80}$
p.460, in caption of Fig.A.2	$\Delta t = 1$ and $\tau = 0.5$	$\Delta t = 0.5$ and $\tau = 1$
p.472, 5 th line in B.2	$x_1 < x_2 < x_3$	$x_a < x_b < x_c$
p.472, 3 rd bullet in Example B.1	$g(x_0) \le g(x_1)$	$g(x_0) \ge g(x_1)$
p.480, end of line 1 to beginning of line 2	sines of cosines	sines and cosines
p.484, line 8	can seen (C.3)	can be seen (C.6)
p.484, line 10	m = 0, 2,, 7	m = 0, 1,, 7
p.486, in footnote 7	(hertz) Hz	hertz (Hz)
p.488, line 2	Figure A2.4	Fig. C.4
p.490, in Eq.(C.13)	d au	dt
p.490, in Eq.(C.14)	$\int_{-\infty}^{\infty} d\tau$	$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}dtd\tau$
n 498 2 nd line after Eq (D 18)	(22)	(D 18)
p.502 in Eq.(E.9)	n-l 1	
p.002, in Eq.(E.0)	$\sum_{i=1}^{n-1} f(x_i) + \frac{1}{2} [f(a) + f(b)]$	$\sum_{i=1} f(x_i)\Delta x + \frac{1}{2} [f(a) + f(b)]\Delta x$
p.510, line 8	$N^{1-3/d}, N^{1-5/d}$	$N^{-2/d}, N^{-4/d}$
p.510, line 10-12	Simpson's of no use in two, three,	Simpson's less competitive than Monte Carlo
	and five dimensions In fact, d =	integration in three, five, and nine dimensions.
	4 dimensions.	
p.518, in Eq.(F.4)	$exp[(y-y_c)^2/\sigma^2]$	$exp[-(y-y_c)^2/\sigma^2]$

p.527, line 5	was also be	can also be
p.528, in Eq.(H.4)	$\dots + a_{1N} x_1 = b_1$	$\dots + a_{1N} x_N = b_1$
p.528, in Eq.(H.5)	$+a_{2N}x_2 = b_2$	$\dots + a_{2N} x_N = b_2$
p.534, just after Eq.(H.27)	$A \cdot x = f$	$A \cdot x = b$
p.534, just after Eq.(H.30)	$\mathbf{E}^{(n)}$	\mathbf{E}^{n}