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A new class of two-dimensional magnetic materials Cu9X2�cpa�6 ·xH2O �cpa=2-carboxypentonic acid; X
=F,Cl,Br� was recently fabricated in which Cu sites form a triangular kagome lattice �TKL�. As the simplest
model of geometric frustration in such a system, we study the thermodynamics of Ising spins on the TKL using
exact analytic method as well as Monte Carlo simulations. We present the free energy, internal energy, specific
heat, entropy, sublattice magnetizations, and susceptibility. We describe the rich phase diagram of the model as
a function of coupling constants, temperature, and applied magnetic field. For frustrated interactions in the
absence of applied field, the ground state is a spin liquid phase with residual entropy per spin s0 /kB= 1

9 ln 72
�0.4752. . . . In weak applied field, the system maps to the dimer model on a honeycomb lattice, with residual
entropy 0.0359 per spin and quasi-long-range order with power-law spin-spin correlations that should be
detectable by neutron scattering. The power-law correlations become exponential at finite temperatures, but the
correlation length may still be long.
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I. INTRODUCTION

Geometrically frustrated spin systems give rise to many
novel classical and quantum spin liquid phases. They may
have technological applications as refrigerants, via adiabatic
demagnetization,1 in which reducing the applied magnetic
field results in a cooling effect as the spins absorb entropy
from other degrees of freedom. Unlike paramagnetic salts
which are limited by ordering or spin-glass transitions due to
residual interactions between the spins, geometrically frus-
trated systems can remain in a disordered, cooperative para-
magnetic state down to the lowest temperatures. Further-
more, they may exhibit an enhanced magnetocaloric effect in
the vicinity of phase transitions at finite applied fields.2–5

A new class of two-dimensional magnetic materials
Cu9X2�cpa�6 ·xH2O �cpa=2-carboxypentonic acid, a deriva-
tive of ascorbic acid; X=F,Cl,Br�6–8 was recently fabri-
cated, which is an experimental realization of a new type of
geometrically frustrated lattice. The Cu spins in these mate-
rials are interconnected in a “triangles-in-triangles” kagome
pattern, which we refer to as a triangular kagome lattice
�TKL� �see Fig. 1�.

Experiments on the Cu9X2�cpa�6 ·xH2O compounds show
no spontaneous magnetization down to at least T=1.7 K,7

consistent with a spin liquid ground state, indicating that Jaa
is antiferromagnetic. However, whether Jab is ferromagnetic
or antiferromagnetic is still an open question. Based
on the observation of a partial rather than saturated
magnetization,7,8 Maruti and ter Haar concluded that the in-
tertrimer coupling is antiferromagnetic, Jab�0.7 In a later
theoretical study using variational mean-field theory on the
quantum Heisenberg model on the TKL, Strečka9 concluded
that the intertrimer coupling is ferromagnetic, Jab�0. Re-
gardless, the lack of observed hysteresis despite the observa-
tion of a magnetization plateau in finite field7 is consistent
with a multitude of ground states which can be connected by
a series of local spin flips.

In this paper we study the classical TKL Ising model us-
ing exact analytic methods and Monte Carlo simulations.

The purpose of this study is to provide explicit predictions,
in order to determine to what extent the experiments can be
explained in terms of a classical Ising model. In particular,
we find significant difference between the behavior of the
susceptibility as a function of temperature for Jab�0 and
Jab�0, and this may be used as an experimental means of
distinguishing the two cases. Discrepancies between experi-
ments and our theoretical predictions will indicate the vector
nature of the actual spins �XY or Heisenberg�, the effects of
quantum fluctuations, or possibly higher order interactions.
This model was previously studied by one of us.10 In that
work, Monte Carlo simulations were used to study the phase
transitions and basic thermodynamics. Zheng and Sun11

mapped the partition function to that of a kagome lattice and
found an analytic expression for the phase boundary in zero
field.

In this paper we present exact results in zero field at finite
temperature, and also in an applied field at zero temperature.
We report the full phase diagram as a function of coupling
constants, temperature, and applied magnetic field. We find
several field-induced transitions. In particular, for frustrated
interactions in applied field, we find a quasi-long-range or-
dered phase which maps to hard-core dimers on the honey-
comb lattice. We complement these exact analytic results
with Monte Carlo simulations on the magnetization and sus-
ceptibility. We report the temperature dependence of the
magnetic susceptibility, and show how it can be used to de-
duce the sign of the coupling constants.

The paper is organized as follows. The TKL Ising model
is described in Sec. II. In Sec. III, we present exact results for
the TKL Ising model in zero field. In Sec. IV we present
exact results at zero temperature. In Sec. V we present the
phase diagram and describe the various phases. In Sec. VI
we present Monte Carlo results for the susceptibility, spon-
taneous magnetization, and magnetization curves. In Sec.
VII we compare our model to models of geometrically frus-
trated magnets on other lattices, as well as to experiments on
TKL systems. In Sec. VIII we present our conclusions, and
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in the Appendix we present two mean-field approximations
in order to illustrate their failure in the frustrated regime.

II. MODEL

The TKL �Fig. 1� can be obtained by inserting triangles
inside the triangles of the kagome lattice, for which it is
sometimes referred to in the literature as the triangles-in-
triangles kagome lattice. Alternatively, it can be derived from
the triangular lattice by periodically deleting 7 out of every
16 lattice sites. This structure has two different spin sublat-
tices a and b, which correspond to small trimers and large
trimers, respectively. We study Ising spins on the TKL with
two kinds of nearest-neighbor interactions, the “intratrimer”
couplings Jaa and the “intertrimer” couplings Jab. Each spin
has four nearest neighbors. The Hamiltonian is

H = − Jaa �
i,j�a

�i� j − Jab �
i�a,j�b

�i� j − h�
i

�i, �1�

where �i= �1, summations run over the nearest spin pairs
and all spin sites, and h is an external magnetic field. The
shaded region in Fig. 1 is one unit cell, which contains 6 a
spins, 3 b spins, 6 a–a bonds, and 12 a–b bonds. We shall
use Na and Nb to denote the total numbers of spins on the a
and b sublattices, so that Na :Nb=2:1. The space group of the
TKL is the same as that of the hexagonal lattice, p6m, in
Hermann-Mauguin notation.

There are four energy scales in the problem: Jaa, Jab, T,
and h. We have found it most convenient to take �Jab� as the
unit of energy. Thus, the model can be described by a three-
dimensional phase diagram in the space of the three dimen-
sionless parameters Jaa / �Jab�, h / �Jab�, and T / �Jab�. The phase
diagram also depends on the sign of Jab.

III. EXACT RESULTS IN ZERO FIELD

In this section we present exact analytic results for the
TKL Ising model in zero magnetic field �h=0�, including the
free energy, internal energy, specific heat, and entropy. We
use a sequence of �−Y transformations and series reductions
�shown in Fig. 2� to transform the Ising model on a TKL into
one on a honeycomb lattice, and then use the known solution
for the honeycomb lattice. �See Ref. 11 for a similar analysis
that transforms the TKL to a kagome lattice keeping the
overall value of the partition function unchanged.� We re-
mark that frustrated Ising models with quenched bond disor-
der may be studied by numerical application of �−Y and
Y −� transformations12,13 and/or Pfaffian methods.14 Our re-
sults from this section are plotted in Figs. 5 and 6, using the
analytic formulas below �as well as series approximations for
extreme values of T�. These thermodynamic quantities do not
depend on the sign of Jab.

A. Effective coupling on the equivalent honeycomb lattice

If an Ising model is on a particular lattice contains a spin
�0 connected to only two other spins �1 and �2 via couplings

Jaa

Jab

FIG. 1. �Color online� The triangular kagome lattice �TKL�.
Solid �open� circles represent a �b� sublattices. Thick and thin lines
represent interactions Jaa and Jab, respectively. The shaded region
represents a unit cell. By shifting the cell slightly �as indicated by
the dashed parallelogram� it can be seen that there are nine spins per
unit cell.
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FIG. 2. �Color online� Transformation of a triangular kagome
lattice �TKL� to a honeycomb lattice. �a� depicts a section of the
TKL, with couplings Jaa and Jab. The procedure begins by applying
�−Y transformations to the six downward-pointing triangles in each
unit cell. This gives lattice �b�. Now take the two strong bonds �J3�
in series to give J5, and the two weak bonds �J4� in series to give J6,
to obtain a “3–12 lattice” �c�. Apply �−Y transformations to the
triangles to obtain a decorated honeycomb lattice �d�. Finally, per-
form series reductions to obtain the honeycomb lattice �f� with a
single coupling Jh.
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J1 and J2, then we can “integrate out” �0 while preserving
the value of the partition function, in order to obtain an ef-
fective coupling J12. The transformation also produces a con-
stant factor multiplying the partition function, A. That is,

�
�0=−1

+1

e��J1�1�0+J2�2�0� = Ae�J12�1�2 �2�

for all combinations of values of �1 and �2. It is most con-
venient to write the effective coupling in terms of t1, t2, and
t12 where ti=tanh �Ji, and the partition function changes in
terms of x1, x2, and x12 where xi=e−2�Ji as follows:

t12 = t1t2, �3�

A = �1 + x1x2�� x12

x1x2
. �4�

The x’s and t’s are related by Möbius duality transforma-
tions, xi= �1− ti� / �1+ ti� and ti= �1−xi� / �1+xi�.

Similarly, if a spin �0 is connected to only three other
spins �1,2,3 via couplings J1,2,3, we can integrate out �0 while
preserving the partition function, in order to obtain effective
couplings J23,31,12 together with a free energy shift. This is
known as a star-triangle or Y −� transformation. The reverse
transformation exists, and is known as a �−Y transformation:
given a � of couplings J23,31,12, we can find an equivalent Y.
Again, it is convenient to use the variables t1=tanh �J1 �and
similarly for t2, t3� and x1=e−2�J1 as follows:

t1 =
�a1a2a3/a0

a1
�cycl.� , �5�

where

a0 = 1 + t23t31t12, �6�

a1 = t23 + t31t12 �cycl.� , �7�

A =
1

1 + x1x2x3
� x1x2x3

x23x31x12
, �8�

and cycl. means that t2, t3, a2, and a3 are found by cyclic
permutation of the indices 1, 2, and 3. In general the a’s may
be negative or complex valued, so that it is not correct to
replace �a1a2a3 /a0 /a1 by �a2a3 /a0a1.

Using a sequence of �-Y transformations and series re-
ductions, we transform the TKL Ising model �with couplings
constants Jaa and Jab� into a honeycomb Ising model �with a
single coupling constant Jh�, as shown in Fig. 2. The trans-
formation equations �in terms of the ti=tanh �Ji variables�
are

t3 = ��taa + tab
2�/�1 + taatab

2� , �9�

t4 = �tab + taatab�/��taa + tab
2��1 + taatab

2� , �10�

t5 = t3
2, �11�

t6 = t4
2, �12�

t7 = 1/��t5 + t5
−1 − 1� , �13�

t8 = t6t7, �14�

th = t8t7. �15�

We can write th directly in terms of taa and tab as follows:

th =
�1 + taa�2tab

2

�1 − taa + taa
2��1 + tab

4� − �1 − 4taa + taa
2�tab

2 �16�

It will be convenient to rewrite this in terms of xi=e−2�Ji, as
this is simpler;

xh =
2�3xaa

2 + 1�xab
2

xab
4 + 6xaa

2xab
2 + 1

. �17�

For Ising models, both the triangular lattice and the
kagome lattice can be transformed into the honeycomb lat-
tice by a similar procedure. Figure 3 shows the effective
dimensionless coupling of the honeycomb lattice, �Jh, as a
function of the inverse temperature for antiferromagnetic
Ising models on different lattices for comparison. Note the
following.

�1� For the triangular Ising AF �TIAF�, the effective
honeycomb coupling is imaginary, and there is no long-range
order.

�2� For the kagome Ising AF �KIAF�, the effective
honeycomb coupling is real. As the kagome couplings are
increased, the effective honeycomb coupling increases until
it saturates at large �. However, it never grows beyond
the critical coupling for the honeycomb model, �Jh

c

=tanh−11 /�3�0.658. Therefore the KIAF does not have a
phase transition.

�3� For the triangular kagome lattice Ising antiferromag-
net �TKLIAF� in the unfrustrated regime �e.g., Jaa=−0.8,

1 2 3 4
Β

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
ΒJh

ΒJh
c�tanh�1 1

�����������������
3
�0.658

TIAF �Jtri��1�

KIAF �Jkag��1�

TKLIAF �Jaa��0.8, Jab��1�

TKLIAF �Jaa��1.2, Jab��1�

FIG. 3. �Color online� Effective dimensionless coupling �Jh of
the honeycomb lattice Ising model as a function of the original
inverse temperature �, for the triangular Ising antiferromagnet
�TIAF�, kagome Ising antiferromagnet �KIAF�, or TKL Ising anti-
ferromagnet �TKLIAF�. In the case of the TIAF, �Jh is imaginary
and Im �Jh is shown as a dashed curve; for the KIAF and TKLIAF,
�Jh is real. For the TKLIAF in the unfrustrated regime, �Jh crosses
the dotted line �the critical coupling of the honeycomb Ising
model�, indicating a phase transition. The other models do not have
phase transitions.
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Jab=−1�, the plot of �Jh intersects the dotted line, indicating
a phase transition at ��3.5.

�4� In contrast, for the TKLIAF in the frustrated regime
�Jaa=−0.8, Jab=−1�, �Jh grows to a maximum and then de-
cays to zero, indicating the absence of a phase transition.
Paradoxically, and unlike the other lattices, stronger bare
couplings lead to a weaker effective coupling. The fact that
�Jh→0 as �→� is closely connected to the fact that the
residual entropy of the TKL lattice has the simple value of
ln 72 per unit cell �as we will show�, unlike the cases of the
TIAF15 and KIAF16 in which the residual entropies are non-
trivial two-dimensional integrals.

B. Phase boundary

The phase boundary of the TKL Ising model in zero ap-
plied field was calculated in Ref. 11. We show an alternative
exact derivation of the results here for pedagogical reasons.
Once we have used the techniques of Sec. III A to map the
TKL Ising model into the Ising model on a honeycomb lat-
tice, we can use known results for the honeycomb lattice.
The critical temperature of the honeycomb Ising model is
given by th

c =tanh �Jh=1 /�3, or, equivalently, xh
c =exp

−2�Jh=2−�3. Substituting in the equivalent coupling of the
honeycomb lattice, Eq. �17�, leads to an implicit equation for
the critical temperature 1 /�c of the TKL Ising model as fol-
lows:

e−4�cJaa = ��3 − 1�cosh 4�cJab − ��3 + 1� . �18�

Equation �7� of Ref. 11 is equivalent to the simpler expres-
sion reported here. This critical curve is plotted in Fig. 4. For
large ferromagnetic Jaa, the critical temperature saturates at a
finite value, Tc / �Jab��4 / ln�2+�3+�6+4�3��2.008 38. As
Jaa is reduced toward −1, the critical temperature falls to
zero. Near Jaa=−�Jab�, the critical curve is approximately lin-
ear:

Tc

Jaa−�Jab� �
4

ln 6��3+1� �1.4302.
Since the mapping from the TKL to the honeycomb lattice

preserves the nature of the singularity in the partition func-

tion, the phase transition is a continuous second-order tran-
sition in the two-dimensional �2D� Ising universality class.

In zero field �h=0� the partition function Z is invariant
under a change of sign of Jab, and the topology of the phase
diagram is independent of this sign, although the identifica-
tion of the phases is not. First consider the model for the case
Jaa=0, where the TKL reduces to a decorated kagome lattice.
If Jab is ferromagnetic, the model develops ferromagnetic
order below the Curie temperature. If Jab is antiferromag-
netic, the model develops ferrimagnetic order below the or-
dering temperature. Although the decorated kagome lattice is
bipartite, the numbers of spins on the a and b sublattices are
not equal: there are twice as many a spins as b spins. Hence
we have ferrimagnetic order, with unequal numbers of up
and down spins producing a net moment. However, the tran-
sition temperature, free energy, internal energy, specific heat,
and entropy are independent of the sign of Jab in the absence
of applied field. Now introduce the coupling Jaa. If this is
ferromagnetic, it has a very little effect, since the a spins
already have a tendency to align. However, if Jaa is antifer-
romagnetic, it fights against the ordering induced by Jab. If
Jaa is sufficiently antiferromagnetic, �Jaa / �Jab��−1�, the sys-
tem is in a frustrated regime with no order even at zero
temperature.

C. Partition function

The partition function per unit cell, zTKL, of the TKL Ising
model is equal to that of the equivalent honeycomb lattice
zH, multiplied by the factors z1 , . . . ,z6 below which are ac-
cumulated during the sequence of �-Y transformations and
series reductions necessary to effect the transformation.
These factors are

z1 =
1

1 + x4x3
2� x4x3

2

xaaxab
2 �first � − Y� , �19�

z2 = �1 + x3
2�� x5

x3
2 �J3 in series� , �20�

z3 = �1 + x4
2�� x6

x4
2 �J4 in series� , �21�

z4 =
1

1 + x7
3�x7

3

x5
3 �second � − Y� , �22�

z5 =
1

1 + x6x7
� x8

x6x7
�J6,J7 in series� , �23�

z6 =
1

1 + x8x7
� x9

x8x7
�J8,J7 in series� . �24�

The total accumulated partition function change is therefore

Ordered

Disordered

MF1 MF2

�6 �4 �2 0 2 4 6 8
0

1

2

3

4

5

Jaa��Jab�

T��Jab�

FIG. 4. �Color online� Phase diagram of the TKL Ising model in
the �Jaa ,T� plane, for Jab= �1 and h=0. The thick curve is the
exact solution �equivalent to that in Ref. 11�. The dotted and dashed
curves are mean-field approximations �see Appendix�. The ordered
phase is ferromagnetic if Jab�0 and ferrimagnetic if Jab�0. The
disordered state is paramagnetic. For Jaa�−Jab, it persists down to
T=0, where the entropy is ln 72 per unit cell and the susceptibility
obeys a Curie law. The arrows indicate the two TKLIAF cases
discussed in Fig. 3.
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zTKL = z1
6z2

6z3
3z4

2z5
3z6

3zH

=
�1 + xab

2�2�1 + 6xaa
2xab

2 + xab
4�3

1 + 2�1 + 6xaa
2�xab

2 + xab
4 zH. �25�

The partition function per unit cell of the honeycomb lattice
has been calculated in the literature by, e.g., the Pfaffian
method.17,18 It is

zH�xh� =
�2�1 − xh

2�
xh

exp�1

2
��w�xh�	
 , �26�

where

��w� = �
0

2	 dp

2	
�

0

2	 dq

2	
ln�w − cos p − cos q − cos�p + q�	

�27�

and

w�xh� =
1 − 2xh + 6xh

2 − 2xh
3 + xh

4

2xh�1 − xh�2 . �28�

For the purposes of numerical evaluation, we rewrite the
function ��w� in the following form:

��w� =
2

	
�

0

	/2

dp ln�cos p + arccosh
w − cos 2p

2 cos p

 .

�29�

In order to get accurate numerical results one has to further
split the range of integration according to the singularities of
the integrand.

Thus the partition function of the TKL Ising model �per
unit cell� is

zTKL�xaa,xab� = 
�xaa,xab�exp� 1
2��w�xh�xaa,xab�	�	 ,

�30�

where


 = 2xaa
−3xab

−5�1 − xab
4�2��1 + 3xaa

2��1 + 6xaa
2xab

2 + xab
4�

�31�

and �, w, and xh are defined in Eqs. �27�, �28�, and �17�,
respectively. The total partition function ZTKL is related to
the partition function per unit cell zTKL by ZTKL�zTKL

N ,
where N is the number of unit cells. We show plots of
−ln zTKL / ���Jaa�� in Figs. 5 and 6 �red curves� in the unfrus-
trated and frustrated regimes, respectively.

D. Energy

The energy per unit cell of the TKL Ising model can be
obtained by differentiation of the partition function as fol-
lows:

u = −
d ln z

d�
= −

dxaa

d�

� ln z

�xaa
−

dxab

d�

� ln z

�xab
�32�

= �
i=aa,ab

Jixi�2
� ln 


�xi
+

�xh

�xi

dw

dxh

d�

dw

 , �33�

where 
 is given in Eq. �31�. d�
dw is the Green function of a

particle on a triangular lattice and can be expressed in terms
of the complete elliptic integral of the first kind, K,19

d�

dw
= �

0

2	 dp

2	
�

0

2	 dq

2	

1

w − cos p − cos q − cos�p + q�

�34�

=−
2

	�− w − 1�3/4�− w + 3�1/4 �35�

�K�1

2
+

w2 − 3

2�w + 1��− w − 1�1/2�− w + 3�1/2� . �36�

We show plots of −u / �Jaa� in Figs. 5 and 6 �green curves�.

E. Specific heat

The heat capacity per unit cell, c= du
dT , can be obtained by

further differentiation:

�f�T���Jaa�

�u�T���Jaa�

c�T�

s�T�

0 5 10 15 20
T

2

4

6

8

10

FIG. 5. �Color online� Thermodynamic functions vs temperature
T for unfrustrated �ferromagnetic� couplings Jaa=5 and �Jab�=1.
Red: free energy f�T�=−kBT ln Z. Green: energy u�T�. Blue: heat
capacity c�T�. Orange: entropy s�T�. All values quoted per unit cell;
each unit cell contains nine sites.

�f�T���Jaa�

�u�T���Jaa�

c�T��10

s�T�

0 5 10 15 20
T

2

4

6

8

10

FIG. 6. �Color online� Thermodynamic functions vs temperature
T in frustrated regime, Jaa=−5 and �Jab�=1, where the intratrimer
coupling Jaa is strong and antiferromagnetic.
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c = 2���Jaa�2xaa� �2 ln 


�xaa�xaa
+ � �xh

�xaa
+

�2xh

�xaa
2xaa�w���

+ � �xh

�xaa
�2

xaa�w��� + �w��2��	

+ �previous term with aa replaced by ab	

+ 2�2JaaJabxaaxab� �2 ln 


�xaa�xab
+

�2xh

�xaa�xab
w���

+
�xh

�xaa

�xh

�xab
�w��� + �w��2��	
� , �37�

where w�, ��, etc., represent derivatives of the functions
w�xh� and ��w� with respect to their arguments. We show
plots of c in Figs. 5 and 6 �blue curves�.

In the unfrustrated case �Jaa�0, Fig. 5�, the specific heat
has a broad hump just above T=Jaa, and a sharp peak near
T=2�Jab�. The broad hump is due to ferromagnetic alignment
within each a plaquette. The sharp peak corresponds to the
phase transition to a ferromagnetic �for Jab�0� or ferrimag-
netic �for Jab�0� state, governed by the weakest links, Jab.
The position of the sharp peak is consistent with the solution
of Eq. �18�. �See also Fig. 4.� In the frustrated case, broad-
ened features remain at both of these energy scales, as shown
in Fig. 6.

F. Zero-temperature limit: Residual entropy

Far from the critical curve, results for two limits can be
obtained, corresponding to the ordered phase and to the dis-
ordered phase �which persists even at zero temperature�.

In the first case, Jaa / �Jab��−1, the system orders at low
temperatures, going into either the ferromagnetic state �for
Jab�0� or ferrimagnetic state �for Jab�0�. In the low-
temperature limit, the partition function and internal energy
may be expanded as

ln Z��� = 6 ln xab − 3 ln xaa +
6xaa

2

xab
2 + ¯ , �38�

u��� = − 12�Jab� + 6�Jaa� + 24e−4��Jab−Jaa��Jab − Jaa� + ¯ .

�39�

As T→0, the residual entropy is zero, whether in the ferro-
magnetic phase or the ferrimagnetic phase.

Suppose Jaa / �Jab��−1. In this case, the model becomes
frustrated when T→0, �→�. We have xaa ,xab→�, xh
→1−, w→�. Expanding ��w�� ln w in a series in w, and
then expanding ln Z as a series in xaa and xab, we find

ln Z��� = ln 72 + ln xaa + 2 ln xab +
2

xab
2 +

1

3xaa
2 +

xab
2

6xaa
2

+ ¯ . �40�

We can thus obtain the following low-temperature approxi-
mation for the energy per unit cell as follows:

u��� = − 2�Jaa� − 4�Jab� + 2
3e−4��Jaa−Jab��Jaa − Jab�

+ 2
3e−4��Jaa+Jab��Jaa + Jab� + 4

3e−4��Jaa��Jaa�

+ 8e−4��Jab��Jab� + ¯ . �41�

The first two terms are the ground state energy. The other
terms represent different types of excitations about the
ground state�s�. The coefficients represent relative degenera-
cies of excited states and ground states, and the exponents
represent excitation energies.

The first term in the series expansion of ln Z gives the
residual entropy per unit cell as follows:

s0 = lim
�Jab→−�

lim
�Jaa→−�

�ln Z + �u� = ln 72. �42�

Thus the residual entropy is exactly ln 72�4.2767, . . . per
unit cell, or 1

9 ln 72�0.4752, . . . per site. This number will be
discussed in more detail in Sec. IV.

IV. EXACT RESULTS AT ZERO TEMPERATURE

In this section we show how the zero-temperature phase
diagram �along with the thermodynamic properties and cor-
relations of the various phases� can be systematically de-
duced with and without applied field by considering ground
states of large triangular plaquettes. By explicitly comparing
the ground state energies, we derive the phase diagram. The
results of this section are summarized in Figs. 10 and 11.

A. Zero field (phases V and VI)

The phase diagram for zero applied field is shown in Fig.
4. For Jaa�−�Jab� and low temperature, the system is in an
ordered phase which is ferromagnetic for Jab�0, and ferri-
magnetic if Jab�0. For Jaa�−�Jab�, the system remains dis-
ordered even at zero temperature, with a residual entropy of
s0=ln 72. The zero-field disordered phase is labeled phase V
in Figs. 10 and 11, and the zero-field ordered phase is labeled
phase VI.

The degeneracy of the ground state manifold can be un-
derstood by considering the energetics of a single large
plaquette, i.e., an a-spin trimer along with its enclosing
b-spin trimer. Representative plaquette configurations within
the ground state are shown in Fig. 7. We enumerate all pos-
sible plaquette energies in Table I. As can be seen from the
table, for any of the 23=8 possible configurations of the b
trimer, there are three and only three configurations of the
enclosed a trimer which are all within the ground state.39

This means that the b spins are effectively free within the
ground state manifold.

In order to count the ground state degeneracy, we now
turn to the unit cell. Since the b spins are free, and there are
three b spins per unit cell, this contributes 23=8 configura-
tions per unit cell to the ground state manifold. For any given
configuration of the b spins, each a trimer in the lattice has a
threefold degeneracy. Since there are two a trimers per unit
cell, these contribute a factor of 32=9 to the ground state
degeneracy. The total degeneracy per unit cell in the ground
state is therefore 8�9=72, as we showed in Sec. III F.
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The fact that the b spins are effectively independent also
means that the correlation function is “perfectly localized:” it
is exactly zero beyond a distance rbb �the distance between
two b spins�. The correlation length � is thus zero �where � is
defined as the asymptotic decay length of the correlation
function at large distances�.

For comparison, at T=h=0, the triangular Ising AF has
power-law correlations. The kagome Ising AF is more frus-
trated than the triangular lattice case, since its ground state
has exponentially decaying correlations. We have shown
here that the ground state of the TKL Ising AF in the frus-
trated regime has perfectly localized correlations, making
this model even more frustrated than either the triangular or
kagome cases.

B. Saturated ferromagnetic phase (phase I)

At very high fields, when h / �Jab��max�4,2�Jaa� / �Jab�
+2�, we find that there is a unique ground state where all the

b spins and a spins are up. This state is easily seen to have
magnetization m=9, entropy s=0, and energy u=−3h
+6�Jaa�+12�Jab� per unit cell.

C. Ferrimagnetic phase (phase II)

At lower fields 0�h / �Jab��4 and when Jaa / �Jab��−1,
there is a ferrimagnetic phase: the a spins, being more nu-
merous, align parallel to the field �up�; the b spins are then
induced to point down due to the antiferromagnetic Jab inter-
action. This phase has m=3, s=0, and u=−3h+6�Jaa�
−12�Jab� per unit cell.

D. Log 9 phase (phase III)

If 4�h / �Jab��2�Jaa� / �Jab�+2, the b spins are completely
polarized, but each a triangle has three degenerate states �see
Fig. 8�. Therefore, in this phase the system is equivalent to a
set of noninteracting three-state Potts spins. This phase has
m=5, s=ln 9=2.1972, . . ., and u=−5h−2�Jaa�+4�Jab� per unit
cell. Again, the correlation function is perfectly localized,
and the correlation length is �=0.

E. Dimer phase (phase IV)

The most interesting situation occurs when 0�h / �Jab�
�4 and Jaa / �Jab��−1. Table I shows that the system will
have the lowest energy if each b trimer has exactly one b

TABLE I. Energy of a large triangle �consisting of three b spins and three spins� as a function of the
configurations of a and b spins. For clarity of presentation, we present the results for the case Jaa=−3, Jab

=−1, h=0, but the form of the table is representative of the entire line Jaa�Jab��−1. The boldfaced numbers
indicate the lowest-energy configurations, which have energy Jaa+2Jab. Note that each row contains exactly
three boldfaced numbers. See text for discussion.

�a

↑↑↑ ↓↑↑ ↑↓↑ ↑↑↓ ↑↓↓ ↓↑↓ ↓↓↑ ↓↓↓

↑↑↑ 15 −1 −1 −1 −5 −5 −5 3

↓↑↑ 11 −5 −1 −1 −1 −5 −5 7

↑↓↑ 11 −1 −5 −1 −5 −1 −5 7

�b ↑↑↓ 11 −1 −1 −5 −5 −5 −1 7

↑↓↓ 7 −1 −5 −5 −5 −1 −1 11

↓↑↓ 7 −5 −1 −5 −1 −5 −1 11

↓↓↑ 7 −5 −5 −1 −1 −1 −5 11

↓↓↓ 3 −5 −5 −5 −1 −1 −1 15

(a)

(b)

FIG. 7. �Color online� The ln 72 phase. Given a configuration of
the three b spins �on the outer triangle�, it can be shown, by enu-
merating all possibilities, that there are exactly three states of the a
spins �on the inner triangle�. The figure illustrates this for two con-
figurations of b spins: �a� all three b spins pointing up, �b� two of
three b spins pointing up. Results for the other configurations can
be seen from the Ising symmetry and the local rotational symmetry
of the triangular plaquettes.

FIG. 8. �Color online� Phase III of the TKL Ising model. When
the field is quite strong, the b spins �outer triangle� are all polarized,
and each a trimer �inner triangle� has three degenerate ground
states.
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spin pointing down. Counting the number of ways to satisfy
this constraint globally is a nontrivial problem. The situation
is the same as that for a kagome Ising AF at T=0 and 0
�h�4�Jkagome�, which has been studied before.20–23 The
down b spins behave like a lattice gas on the kagome lattice
with nearest-neighbor exclusion, at maximal density. The
ground states can be mapped to configurations of dimers
occupying a honeycomb lattice �see Fig. 9�. This problem
has been solved exactly using the Pfaffian method;17 the en-
tropy per unit cell is

1

8	2�
0

2	

dp�
0

2	

dq ln�1 − 4 cos p cos q + 4 cos2 q�

= 0.3231, . . . . �43�

Therefore, the entropy of the TKL phase IV is also 0.3231…
per unit cell, or 0.03590… per site.

The correlation function of the b spins, Cbb�r�
= ��b�0��b�r��, is equivalent to the dimer-dimer correlation
function. This correlation function decays as a power law,
1 /r2, and nice visualizations in real space and reciprocal
space are given in Ref. 23. Thus, the model is in a critical
phase, in the “Villain-Stephenson universality class.” The
magnetization per unit cell is m=3 and the energy per unit
cell is u=−3h−2�Jaa�−4�Jab�.

F. Phase diagram

We now combine the above results in order to report the
full phase diagram of the TKL Ising model. Figure 10 shows
the phase diagram for antiferromagnetic intertrimer coupling,
Jab�0, and in Fig. 11 we show the phase diagram for ferro-
magnetic intertrimer coupling, Jab�0. In both cases, the
phase diagram is symmetric under for h→−h, with simulta-
neous change of sign of all spins. The entropy and magneti-
zation change discontinuously across every zero-temperature
phase boundary. Exactly on the phase boundaries and inter-
sections of these boundaries, the entropy will be higher than
in either adjacent phase, because the system can choose from
states within each set of ground states.

Note that the high-field phases �I and III� are common to
both phase diagrams. The more interesting case is that of Fig.

10, which has antiferromagnetic intertrimer coupling Jab
�0, and more phases at intermediate field strength. Right at
h=0 in both phase diagrams, the ground state is phase V, the
spin liquid with residual entropy s0=ln 72 that we discussed
in Sec. IV A. When Jab�0, the application of an infinitesi-
mal field induces a critical state with power-law correlation
functions �phase IV�, which we have mapped to the problem
of hard-core dimers on a honeycomb lattice.

V. FINITE TEMPERATURE AND FINITE FIELD

Most of the phase transitions in the zero-temperature
phase diagrams are destroyed by thermal fluctuations. The
clear exception is phase VI, which has spontaneously broken
Z2 symmetry. This long-range ordered phase survives at fi-
nite temperature, and has a true phase transition at a Curie
temperature TC�0. Since h is a relevant perturbation, this

Honeycomb dimer modelTKL phase IV

FIG. 9. �Color online� Phase IV of the TKL Ising model: Map-
ping of the spin configurations to configurations of dimers on a
honeycomb lattice. The yellow patches represent defects in the spin
configuration, which correspond to vacancies �or monomers� in the
dimer picture.

4

I

IIIV

III

0
−1 0

h
|Jab|

Jaa/ |Jab|

h
=

2 |J
aa |+

2 |J
ab |

m = 9

s = 0

Ferrimagnetic

m = 3

s = 0

m = 5

s = ln 9 = 2.1972

Critical dimer phase

m = 3

s = 0.3231

V

m = 0

s = ln 72 = 4.2767

VI

FIG. 10. �Color online� Phase diagram of the TKL Ising model
in the �Jaa ,h� plane, for Jab�0 �antiferromagnetic intertrimer cou-
pling� and T=0. The phase diagram is symmetric under a change of
sign of h. The phases I�, II�, III�, and IV� are just mirror images of
I, II, III, and IV obtained by swapping up and down spins. The
yellow region represents the critical phases with power-law corre-
lations; note that it does not include the thin line at h=0, which is
phase V, the ln 72 phase described in the text. The thick line �VI�
persists as a true ferrimagnetic phase transition at finite T; all other
lines turn into crossovers.

0

III I

0−1

h
|Jab|

Jaa/ |Jab|

h
=

2 |J
aa | −

2 |J
ab |

V

m = 0

s = ln 72 = 4.2767

VI

FIG. 11. �Color online� Phase diagram of the TKL Ising model
in the �Jaa ,h� plane, for Jab�0 �ferromagnetic intertrimer coupling�
and T=0.
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finite-temperature phase transition is destroyed at any finite
field, leaving only a crossover.

The other transitions in Figs. 10 and 11 are not character-
ized by a spontaneously broken symmetry with an order pa-
rameter. Therefore, they cannot persist at finite T as tradi-
tional order-disorder transitions. However, a more subtle
analysis is required to understand whether the critical phase,
phase IV, persists at finite T �bounded, e.g., by a Kosterlitz-
Thouless transition curve�. The situation is quite similar to
that for the kagome Ising AF described in Ref. 23. Based on
the table of ground state energies, Table I, it is possible to
enumerate the types of defects that can occur in phase IV.
These defects correspond to breaking a dimer into two
monomers �see Fig. 9�, and can only be created in pairs.
Each defect has energy 
U=min�h ,4�Jab�−h�. The entropy

S associated with creating a defect pair is at least O�ln L2�,
because one may choose to break any of the O�L2� dimers; in
fact, the entropy is even greater than this because the result-
ing monomers can be moved apart, resulting in many new
configurations. Hence at any finite T, the density of mono-
mers is finite. A theorem of Lieb and Heilman24 states that
monomer-dimer models cannot have phase transitions at any
finite density of monomers. Therefore, the critical phase only
exists at T=0, and it is destroyed at finite T.

However, if the density of monomers is low, the correla-
tion length � may still be long; naively, one might expect
�2�1 /nmonomers�exp�Emonomer /T�, but a more careful treat-
ment accounting for the effective Coulomb attraction
between monomers gives the result �2�1 /nmonomers
�exp�8Emonomer /7T�.23 This scenario is consistent with the
size-dependent peaks in the susceptibility that we find from
Monte Carlo simulations �see Sec. VI�.

VI. MONTE CARLO SIMULATIONS

In this section we present the results of Monte Carlo �MC�
simulations of the TKL Ising model, Eq. �1�, for various
combinations of parameters. The simulations corroborate our
analytic predictions and also allow us to perform calculations
at finite h and T as well as to compute the magnetization and
susceptibility.

We use the Wolff algorithm for Jaa�0 at h=0, and the
Metropolis algorithm for Jaa�0 at h=0 and h�0. The sys-
tem sizes we use are L=12,24,36,60, where L is the length
of the underlying triangular lattice, so that the total number
of spins is N= 9

16L2; for periodic boundary conditions, L
should be a multiple of 3 in order to avoid introducing
boundary defects and additional frustration.

In order to evaluate the heat capacity C and magnetic
susceptibility �, we use the fluctuation-dissipation theorem

C =
�H2� − �H�2

NT2 , �44�

� =
�M2� − �M�2

NT
, �45�

where �H� and �M� are the Monte Carlo averages of the total
energy �i.e., the Hamiltonian� and magnetization, respec-

tively. We define the sublattice magnetizations as

ma =
1

Na
�
i�a

�ai, �46�

mb =
1

Nb
�
i�b

�bi, �47�

where Na is the number of a-spin sites, and Nb is the number
of b-spin sites.

A. Zero magnetic field

We first show Monte Carlo results at zero field. Figure 12
shows the temperature evolution of the heat capacity and
susceptibility in a representative unfrustrated case, Jaa
=5Jab�0. The Monte Carlo results for the heat capacity are
consistent with the exact results in Sec. IV; the peak in the
heat capacity in our simulations becomes taller and narrower
as L increases, tending toward the exact solution for L=�.

Figures 13 and 14 show results for two frustrated param-
eter combinations �Jaa / �Jab��−1�. In both cases, the suscep-
tibility shows a marked difference from the case of ferro-
magnetic intratrimer coupling, Jaa�0. For Jaa�0, the
susceptibility shows a sharp peak at the Curie temperature
TC, whereas for Jaa�0, it tends to � as T→0.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

T

C
�T
�

(a)

(b)

FIG. 12. �Color online� Temperature dependence of �a� heat
capacity and �b� susceptibility, from Monte Carlo simulation for
Jaa=5 and Jab= +1 with system sizes L=12,24,36,60. Red line �no
dots� represents the exact solution of specific heat. Peaks become
taller and narrower as L increases.
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Unlike the free energy, heat capacity, entropy, and internal
energy, the susceptibility depends on the sign of Jab. Our
predictions about the susceptibility can be used to distinguish
whether a physical TKL Ising system has ferromagnetic or
antiferromagnetic coupling between the a and b sublattices.
For Jab�0, the inverse susceptibility 1 /��T� shows two lin-
ear pieces, with a crossover at the lower coupling constant
Jab. However, when Jab�0, the inverse susceptibility ap-
proaches zero much slower than the Jab�0 case.

The difference between antiferromagnetic and ferromag-
netic coupling Jab is even more evident in the plots of T�. At
low temperatures, T� tends to a small finite constant as T
→0 if the intertrimer coupling is antiferromagnetic, Jab�0;
whereas, if the intertrimer coupling is ferromagnetic, Jab

�0, T� goes through a minimum around T�Jaa, increases
sharply, and saturates at a finite value as T→0.

B. Finite magnetic field

In Figs. 15 and 16, we show Monte Carlo results at finite
field h and low temperature T=0.1 for Jaa=−2 and Jab=−1.
The magnetization curves in Fig. 15 have a series of steps
and plateaux �as is typical of frustrated spin systems�. Start-
ing from h=0, as a field is applied, both the a and b sublat-
tices immediately respond as the critical dimer phase is in-
duced, developing �normalized� sublattice magnetizations of
ma=mb=1 /3. As field is increased, the b spins are more eas-
ily polarized, while the a-sublattice spins only become fully
polarized when the magnetic field is strong enough.

The susceptibility as a function of applied field has a se-
ries of peaks, as shown in Fig. 16. The peaks at h= �4
increase with increasing system size from L=12 to L=24.
This indicates that the correlation length �in the vicinity of
the peaks� is comparable to, or larger than, the system size.

(a)

(b)

(c)

FIG. 13. �Color online� Temperature dependence of �a� heat
capacity and �b� inverse susceptibility �1 /��T�	 and �c� T��T�, from
Monte Carlo simulation for Jaa=−10 and Jab=−1 with system sizes
L=12,24,36,60.

(a)

(b)

(c)

FIG. 14. �Color online� Temperature dependence of �a� heat
capacity, �b� inverse susceptibility �1 /��T�	, and �c� T��T�, from
Monte Carlo simulation for Jaa=−10 and Jab=1 with system sizes
L=12,24,36,60.
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This does not indicate a true finite-temperature phase transi-
tion. Rather, because phase IV is critical �with infinite corre-
lation length�, the correlation length diverges as temperature
is lowered toward this phase. At the low temperatures we
have simulated, the correlation length is comparable to our
system sizes. See Sec. V.

VII. DISCUSSION

Phases I, II, and III can easily be simulated using the
Metropolis algorithm. However, phase IV has extremely
slow dynamics when simulated using the Metropolis algo-
rithm at low temperature—this could be described as glassy
dynamics. We believe that the simulations may be made
more efficient by using geometric cluster methods25 or by
augmenting the Metropolis algorithm with directed-loop up-
dates tailored to the honeycomb dimer state.26,27 The slow
dynamics under the Metropolis algorithm may, however, be
representative of the true dynamics in a physical realization
of the TKL Ising antiferromagnet.

It may be possible to stabilize more phases at finite tem-
perature by introducing an appropriate perturbation. For ex-
ample, introducing coupling in the third direction may be
sufficient to stabilize the critical phase it finite T. In addition,
it may be possible to induce a Kasteleyn transition in phase

IV by applying some kind of orienting field �e.g., uniaxial
strain� to the TKL, similar to what was suggested by Moess-
ner and Sondhi23 on the kagome lattice. In light of existing
studies on triangular and kagome lattices, it is reasonable to
expect that adding next-nearest-neighbor interactions to the
TKL will produce an even richer phase diagram, such as
Kagome lattice.28

A. Comparison with other frustrated Ising models

In Table II, we present a comparison of the spin-spin cor-
relations and the residual entropy among the frustrated TKL,
triangular, and kagome lattices. The simplest example of a
geometrically frustrated system is the triangular Ising antifer-
romagnet �TIAF�, i.e., a set of Ising spins on a triangular
lattice with antiferromagnetic pairwise couplings. Due to the
presence of odd cycles in the lattice graph, it is impossible
for all pairs of nearest-neighbor spins to be simultaneously
antiparallel. As a result, the antiferromagnetic interactions
are unable to produce long-range order even at zero tempera-
ture. Instead, at zero temperature, the TIAF has a quasi-long-
range-ordered state in which the correlations decay with
distance as r−1/2.29,30 This ground state is macroscopically
degenerate, with a zero-temperature residual entropy of
0.3231kB per spin.15,31–33 This number is the same as the
entropy per unit cell of the random dimer model on a hon-
eycomb lattice, and it crops up in many other places. Al-
though the TIAF has no phase transition in zero field, the
application of a finite field produces a surprisingly rich phase
diagram. A small field induces a Berezinskii-Kosterlitz-
Thouless transition to a “spin crystal” phase that breaks
translational symmetry and has long-range order—the corre-
lation function oscillates with distance but does not decay. At
larger fields the crystalline order is destroyed via a transition
in the three-state Potts universality class. In this limit the
TIAF is related to Baxter’s exactly soluble hard hexagon
lattice gas model.34

Another frustrated spin system is the antiferromagnetic
Ising model on a kagome lattice, formed by periodic removal
of a quarter of the sites from the triangular lattice. Unlike the
TIAF, the KIAF in the absence of field has pair correlations
that decay exponentially at all temperatures including
T=0.35,36 Its ground state entropy is 1.5055kB per unit cell or
0.5018kB per spin,16 higher than that of the TIAF because the

TABLE II. Comparison of various frustrated Ising models at T
=0. Residual entropies are quoted per unit cell; they are the loga-
rithms of irrational numbers, unless otherwise stated.

Lattice Entropy Spin-spin correlation

Triangular 0.3231… r−1/2

Triangular in field 0 Long-range ordered

Kagome 1.5055… e−r/�

Kagome in weak field 0.3231… r−2

TKL ln 72 0 for r�rbb

TKL in weak field 0.3231… r−2

TKL in medium field ln 9 0 for r�rbb
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FIG. 15. �Color online� Magnetization m vs external field h
from Monte Carlo simulation for Jaa=−2, Jab=−1 at T=0.1 for L
=12. Sublattice magnetizations ma and mb are also shown.
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FIG. 16. �Color online� Susceptibility � vs external field h from
Monte Carlo simulation for Jaa=−2, Jab=−1 at T=0.1 for L=12.
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smaller coordination number allows more freedom. At finite
h, there is a different spin liquid state that can be mapped to
random dimers on a honeycomb lattice. In this state the spin-
spin correlation function decays as a power law, 1 /r2. The
residual entropy is 0.3231kB per unit cell, or 0.1077kB per
spin.

The ground state of the TKL Ising AF without applied
field is even more frustrated than that of the kagome lattice:
the correlation function becomes exactly zero beyond a cer-
tain cutoff radius. The residual entropy per spin is 1

9 ln 72
=0.4752, . . .. At finite h, there is a correlated, critical spin
liquid state which we have mapped to hard-core dimers on a
honeycomb lattice. This state has a residual entropy of
0.3231kB per unit cell, or 0.035 90 per spin �see Table II�.

B. Comparison with experiment

As discussed in the Introduction, the recently fabricated
family of compounds Cu9X2�cpa�6 ·xH2O have an arrange-
ment of the copper sites which forms a triangular kagome
lattice. There is no evidence of spontaneous magnetization
down to at least T=1.7 K,7 consistent with a spin liquid
ground state, which indicates that Jaa is antiferromagnetic.
However, there is no agreement yet as to whether Jab is
ferromagnetic or antiferromagnetic.7,9

In studying the magnetic susceptibility, several groups
find that the slope of 1 /� versus T is roughly linear at high
temperature, but as T is lowered, the slope increases.7,8,37

This is consistent with either Jab ferromagnetic or antiferro-
magnetic, as seen in Figs. 13�b� and 14�b�. A distinction can
be made, though, by the behavior of T�. Whereas T� satu-
rates to a finite value at low T for antiferromagnetic intertri-
mer coupling Jab�0, T� reaches a minimum at intermediate
T before saturating at a finite value as T→0 if the intertrimer
coupling is ferromagnetic, Jab�0. To the extent that the
Cu9X2�cpa�6 ·xH2O materials can be described by an Ising
TKL model like the one in this paper, our calculations indi-
cate that the intertrimer coupling must be ferromagnetic,
Jab�0, so that upon application of a field, the system should
be in phase III, rather than phase IV. Since there is a striking
difference in the residual entropies in these two phases �s0
=ln 9=2.1972, . . . in phase III vs s0=0.3231, . . . in phase IV�,
heat capacity measurements will also be useful in distin-
guishing these phases. Other future experiments, including
neutron scattering, NMR, and �SR, can also provide useful
data for comparing to models of frustrated magnetism on the
TKL.

VIII. CONCLUSIONS

In conclusion, we have studied an Ising model on the
triangular kagome lattice �TKL� with two interactions Jaa
and Jab, temperature T, and external field h. We have calcu-
lated the complete phase diagram in �Jaa ,Jab ,h ,T� parameter
space exactly. Furthermore, we have obtained exact results
for thermodynamic quantities �free energy, energy, heat ca-
pacity, and entropy� at all T for h=0, and at all h for T=0,
and plotted them for representative cases.

In the experimentally relevant regime, �Jaa�� �Jab�, if Jaa
is ferromagnetic, the specific heat shows a broad hump cor-

responding to intratrimer ordering, as well as a sharp peak at
lower temperatures due to the onset of true long-range order.
If Jaa is antiferromagnetic there are two broad features.

We have computed the magnetization M�T ,h� and suscep-
tibility ��T ,h� in various regimes using Monte Carlo
simulations. To the extent that experiments on the
Cu9X2�cpa�6 ·xH2O materials can be compared with an Ising
TKL model, our calculations indicate that Jab�0.

We find that at strong frustration and zero field, as tem-
perature is reduced, the model enters a spin liquid phase with
residual entropy s0=ln 72 per unit cell, with “perfectly local-
ized” correlations. This stands in contrast with the triangular
and kagome Ising antiferromagnets, whose residual entropies
cannot be expressed in closed form.

The most interesting feature of the model is a correlated
critical spin liquid phase �with power-law correlations� that
appears at strong frustration, weak fields, and zero tempera-
ture. We have mapped this phase to hard-core dimer cover-
ings of a honeycomb lattice. The critical power-law correla-
tions are reduced to exponential correlations at finite T, but
the correlation length may still be large. Such a phenomenon
would be detectable by neutron scattering measurements.
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APPENDIX: MEAN-FIELD APPROXIMATIONS

For pedagogical purposes, we examine the zero-field TKL
Ising model using two mean-field approaches. Compared
with the exact solution �see Fig. 4�, we see that such ap-
proaches can be quite misleading in the frustrated regime
Jaa / �Jab��−1.

In the simplest mean-field approximation �MF1�, every
spin is assumed to fluctuate thermally in a mean field deter-
mined by the average magnetizations of its neighbors. This
leads to a pair of simultaneous equations for the spontaneous
magnetizations of the a and b sublattices, ma= ��a� and
mb= ��b�,

ma = tanh ��2Jaama + 2Jabmb� ,

mb = tanh ��4Jabma� , �A1�

where �=1 /T. Linearizing the tanh function in ��a� and ��b�
gives the critical temperature

Tc
MF1 = Jaa + �Jaa

2 + 8Jab
2. �A2�

We also present a more advanced mean-field approxima-
tion �MF2�, similar to the method used by Strečka9 for the
quantum Heisenberg TKL model, in which we sum over all
eight states of the a trimers with appropriate Boltzmann
weights instead of treating each a spin independently. The
mean-field equations are then
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ma =
e4�Jaa sinh 6�Jabmb + sinh 2�Jabmb

e4�Jaa cosh 6�Jabmb + 3 cosh 2�Jabmb
,

mb = tanh ��4Jabma� , �A3�

and the critical temperature is given by

Tc
MF2

�Jab�
=�8�1 + 3e4Jaa/Tc

MF2
�

�3 + e4Jaa/Tc
MF2

�
. �A4�

Tc
MF1 and Tc

MF2 are the dotted and dashed curves, respec-
tively, in Fig. 4. The mean-field approximations overestimate
Tc by a factor of 2 or more. In the regime Jaa / �Jab��1, Tc is
dominated by the weak links �Jab�, so Tc / �Jab� tends to a
constant, a fact which is captured by MF2. However, in the
frustrated regime Jaa / �Jab��−1, both MF1 and MF2 predict
the wrong behavior of Tc �see Fig. 4�. Also, if an external
field is included in the analysis, these mean-field approxima-
tions predict an induced ferromagnetic or ferrimagnetic mo-
ment, but by construction, they are unable to capture phases
III, IV, and the zero-field “ln 72” phase in the rich phase
diagram presented in Sec. IV.
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