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We report inelastic neutron scattering studies of magnetic excitations in antiferromagnetically ordered

SrFe2As2 (TN ¼ 200–220 K), the parent compound of the FeAs-based superconductors. At low tem-

peratures (T ¼ 7 K), the magnetic spectrum SðQ; @!Þ consists of a Bragg peak at the elastic position

(@! ¼ 0 meV), a spin gap (! $ 6:5 meV), and sharp spin-wave excitations at higher energies. Based on

the observed dispersion relation, we estimate the effective magnetic exchange coupling using a

Heisenberg model. On warming across TN , the low-temperature spin gap rapidly closes, with weak

critical scattering and spin-spin correlations in the paramagnetic state. The antiferromagnetic order in

SrFe2As2 is therefore consistent with a first order phase transition, similar to the structural lattice

distortion.
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The parent compounds of the high-transition tempera-
ture (high-Tc) copper oxides are simple antiferromagnetic
(AF) Mott insulators [1] characterized by a very strong
nearest neighbor AF exchange coupling J (>100 meV) in
the CuO2 planes [2]. When holes or electrons are doped
into the CuO2 planes, the character of the ground state is
fundamentally altered from an AF insulator to a supercon-
ductor with persistent short-range AF spin correlations
(excitations) [3]. In the case of FeAs-based superconduc-
tors such as RFeAsO1%xFx (where R ¼ La, Nd, Sm, Pr,. . .)
[4–7] and A1%xBxFe2As2 (A ¼ Ba, Sr, Ca, B ¼ K, Cs, Na)
[8–11], although the undoped parent compounds are also
long-range ordered antiferromagnets with a collinear spin
structure as shown in Fig. 1(a) [12–16], much is unknown
about the magnetic exchange coupling responsible for such
a spin structure. For example, early theoretical studies
suggested that LaFeAsO has a spin-density-wave (SDW)
instability [17,18]. As a consequence, the AF spin structure
in these materials arises from quasiparticle excitations
across electron-hole pockets in a nested Fermi surface
[19], much like SDWantiferromagnetism in metallic chro-
mium (Cr) [20]. Alternatively, a Heisenberg magnetic
exchange model [21–24] is suggested to explain the AF
structure. Here, the collinear spin phase is stable when the
nearest neighbor exchange J1 and the next nearest neighbor
exchange J2 satisfy J1 < 2J2 [Fig. 1(a)]. First-principles
calculations estimate J1 & J2 [23]. In contrast, some band
structure calculations [25] suggest that the J1 along the a
axis and b axis of the low-temperature orthorhombic struc-
ture (c > a > b) can have different signs with J1a and J1b
being AF and ferromagnetic, respectively, and that J1a >
2J2. Therefore, there is no theoretical consensus on the

relative strengths of J1a, J1b, and J2 or the microscopic
origin of the observed AF spin structure. If magnetism is
important for superconductivity of these materials, it is
essential to establish the ‘‘effective Hamiltonian’’ that
can determine the magnetic exchange coupling.
In this Letter, we report inelastic neutron scattering

studies of spin-wave excitations in single crystals of
SrFe2As2 [15,26,27]. At low temperature, we find that
spin waves have an anisotropy gap of ! ¼ 6:5 meV and
disperse rapidly along both the [H; 0; 0] and [0; 0; L] direc-
tions. On warming to 160 K, the magnitude of the spin gap
decreases to 3.5 meV while the intensities of the spin-wave
excitations follow the expected Bose statistics. However,
there are only weak critical scattering and magnetic corre-
lations in the paramagnetic state at 240 K, in sharp contrast
to the SDW excitations in Cr [20] and spin waves in
cuprates [2,3]. We estimate the effective magnetic ex-
change coupling using a Heisenberg model and find that
J1a þ 2J2 ¼ 100( 20 meV, Jz¼5(1meV, with a mag-
netic single ion anisotropy Js ¼ 0:015( 0:005 meV. The
weak critical scattering and paramagnetic spin-spin corre-
lations, together with the simultaneous first order structural
transition [15], suggest a first order AF phase transition.
Our experiments were carried out on HB-1 triple-axis

spectrometer at the High Flux Isotope Reactor, Oak Ridge
National Laboratory, and BT-7 and SPINS triple-axis spec-
trometers at the NIST Center for Neutron Research. For
HB-1 and BT-7 measurements, we fixed the final neutron
energy at Ef ¼ 14:7 meV and used PG(0,0,2) (pyrolytic
graphite) as monochromator and analyzer. A PG filter was
placed in the exit beam path to eliminate !=2. For the
SPINS measurements, the final neutron energy was fixed at
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Ef ¼ 5 meV and a cold Be filter was placed in the scat-
tered beam path. SrFe2As2 single crystals with a TN dis-
tribution from 200 to 220 K were grown from self flux
[15,27] and coaligned within 2 deg to have a total mass of
&0:7 g. From earlier diffraction work [15], we know that
the AF order occurs in close proximity to the lattice dis-
tortion, changing the crystal structural symmetry from
tetragonal above TN to orthorhombic below it [Fig. 1(b)].
However, it is unclear whether the structural and magnetic
phase transitions are second [28] or first order [29]. For the
observed spin structure [Fig. 1(a)], magnetic Bragg peaks
are allowed at [H, 0, L] (H, L are odd integers) reciprocal
lattice units (r.l.u.), where the momentum transfer is
Qðin "A%1Þ¼ ðH2"=a;K2"=b;L2"=cÞ and a¼5:5695ð9Þ,
b ¼ 5:512ð1Þ, c ¼ 12:298ð1Þ "A are lattice parameters in

the orthorhombic state at 150 K. To probe spin-wave
excitations, we aligned our single crystal array in the
[H, 0, L] zone, where we can probe excitations along the
[H, 0, 0] and [0, 0, L] directions.
Figures 2(a) and 2(e) show constant-energy scans for@! ¼ 1 and 5 meV around [H, 0, 1] at 160 K obtained on

SPINS. While the scattering at @! ¼ 1 meV is featureless
[Fig. 2(a)], there is a clear peak centered at H ¼ 1 in the
5 meV data [Fig. 2(e)]. This immediately suggests that spin
waves in SrFe2As2 have an anisotropy gap at this tempera-
ture that is less than 5 meV. Moving on to higher energies,
Figs. 2(b)–2(d) and 2(f)–2(h) summarizeQ scans along the
[H, 0, 0] and [0, 0, L] directions, respectively, at different
energies. The Q widths of the scattering clearly become
broader with increasing energy. Figures 1(c) and 1(d) show
the observed dispersion curves for the limited energy range
with observable spin-wave excitations. Assuming an effec-
tive Heisenberg Hamiltonian [24,30]H ¼ J1a

P
i;jSi ) Sj þ

J1b
P

i;jSi ) Sj þ J2
P

i;jSi ) Sj þ JzSi ) Sj % JsðSzi Þ2, where
J1a, J1b, J2, and Jz are exchange interactions shown in
Fig. 1(a), Js is the single ion anisotropy, and S is the
magnitude of iron spin, the spin-wave dispersions along
the [H, 0, 0] and [0, 0, L] directions near the (1, 0, 1) Bragg
peak are EðkxÞ ¼ 2S½ðJ1a þ 2J2 þ Js þ JzÞ2 % ðJz %
ðJ1a þ 2J2Þ coskxÞ2+1=2 and EðkzÞ ¼ 2S½ð2J1a þ 4J2 þ
Js þ Jz % Jz coskzÞðJs þ Jz þ Jz coskzÞ+1=2, respectively.
In addition, the size of the spin gap due to the single ion
anisotropy is !ð1;0;1Þ¼2S½Jsð2J1aþ4J2þJsþ2JzÞ+1=2.
The solid lines in Figs. 1(c) and 1(d) are the best fits with

FIG. 2. Wave vector dependence of the spin-wave excitations
at 160 K obtained on cold [(a) and (e)] and thermal [(b)–(d) and
(f)–(h)] triple-axis spectrometers at different energies. (a)Q scan
along the [H, 0, 1] direction at @! ¼ 1 meV using SPINS. The
spectrum is featureless indicating the presence of a spin gap
exceeding 1 meV. Identical scan at @! ¼ 5 meV in (e) shows
clear evidence of spin-wave excitations centered at (1, 0, 1).
(b–d) Q scans along the [H, 0, 1] or [H, 0, 3] directions at
different energies. The spectra clearly broaden with increasing
energy. (f–h) Similar scans along the [1, 0, L] direction, which
probe the exchange coupling Jz.

FIG. 1 (color online). (a) The Fe spin ordering in the SrFe2As2
chemical unit cell and magnetic exchange couplings along
different high-symmetry directions. (b) The AF Néel tempera-
ture and the temperature dependence of the structural (2, 2, 0)
Bragg peak for one of the SrFe2Sr2 crystals used in the experi-
ment [15]. The inset shows positions in reciprocal space probed
in the experiment. (c) Observed spin-wave dispersion along the
[H, 0, 0] direction at 160 K. (d) Similar dispersion along the [0,
0, L] direction. (e) Calculated three-dimensional spin-wave
dispersions using J1a ¼ 20, J1b ¼ 10, J2 ¼ 40, Jz ¼ 5, and
Js ¼ 0:015 meV. (f) Temperature dependence of the anisotropy
spin gap !ðTÞ.
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these equations, where J1a þ 2J2 ¼ 100( 20 meV, Jz ¼
5( 1 meV, and Js ¼ 0:015( 0:005 meV. The three-
dimensional plot in Fig. 1(e) shows the expected spin-
wave dispersion at higher energies.

To determine the temperature dependence of the spin
gap, we carried out energy scans at the signal and back-
ground positions for spin waves at different temperatures.
At 7 K, an energy scan at the magnetic zone center position
Q ¼ ð1; 0; 1Þ shows an abrupt increase above 6.5 meV,
while the background scattering at Q ¼ ð1:2; 0; 1Þ is fea-
tureless [Fig. 3(a)]. Energy scans at equivalent positions
Q ¼ ð1; 0; 3Þ and (0.8, 0, 3) in Fig. 3(b) show similar results
and therefore reveal a low-temperature spin gap of ! ¼
6:5 meV. On warming to 80 K, identical scans at Q ¼
ð1; 0; 1Þ andQ ¼ ð1:2; 0; 1Þ show that the spin gap is now at
! ¼ 4:5 meV [Fig. 3(c)]. Finally, ! becomes 3.5 meV at
160 K, consistent with constant-energy scans in Figs. 2(a)
and 2(e). These results indicate that the spin anisotropy of
the system reduces with increasing temperature.

Figure 4 summarizes the temperature dependence of the
spin waves and quasielastic scattering in the AF ordered
and paramagnetic states obtained on SPINS and BT-7.
Figure 4(a) shows energy scans at Q ¼ ð1; 0; 1Þ for T ¼
130, 160, 200, 240, and 280 K plotted on a log scale. When
the temperature is increased across TN (&210 K), there is a
rapid decrease in the ordered moment but little evidence
for quasielastic and critical scattering, which are signatures
of a second order phase transition. To illustrate this point,
we plot in Fig. 4(b) the temperature difference scattering
using 280 K data as background. Besides the magnetic
Bragg peak below TN at @! ¼ 0 meV, there is little qua-
sielastic critical scattering typical of a second order phase
transition. Figure 4(c) shows constant-energy scans (@! ¼
1 meV) measured on SPINS, and the scattering is essen-
tially featureless at all temperatures investigated. Assum-
ing no spin correlations in the paramagnetic state at 280 K,
the differences in the scattering between 240 and 280 K at

@! ¼ 1 meV should reveal the magnetic intensity gain
close to TN. Consistent with the temperature dependence
of the energy scans in Figs. 4(a) and 4(b), there are signs of
possible uncorrelated paramagnetic scattering (since the
subtracted data in Fig. 4(e) are overall positive) at 240 K
but weak critical scattering. For temperatures below TN,
we find that spin-wave excitations at temperatures below
160 K simply follow the Bose statistics [Fig. 4(f)].
The discovery of the collinear AF order with small mo-

ment in LaFeAsO [12] has caused much debate about its
microscopic origin. Since LaFeAsO is a semimetal, the
observed AF order may arise from a SDW instability due to
Fermi surface nesting [17–19], where electron itinerancy is
important much like incommensurate SDW order in pure
metal Cr [20]. Alternatively, there are reasons to believe

FIG. 3 (color online). Temperature dependence of the spin gap
obtained from energy scans around the (1,0,1) and (1,0,3) Bragg
peaks. (a) Low-temperature (T ¼ 7 K) constant-Q scans at the
signal [Q ¼ ð1; 0; 1Þ] and background [Q ¼ ð1:2; 0; 1Þ] positions
show a clear spingap of ! ¼ 6:5 meV. (b) Similar scans at Q ¼
ð1; 0; 3Þ andQ ¼ ð0:8; 0; 3Þ which again show! ¼ 6:5 meV. (c),
(d) Temperature dependence of the spin gap, where ! ¼
4:5 meV at 80 K and ! ¼ 3:5 meV at 160 K.

FIG. 4 (color online). Temperature dependence of the quasi-
elastic magnetic scattering and spin-wave excitations below and
above TN . Data in (a)–(c) are obtained on SPINS. (a) Constant-Q
scans at the Q ¼ ð1; 0; 1Þ Bragg peak position at different
temperatures. Except for the dramatic increase in the elastic
component below TN , the quasielastic scattering above @! ¼
0:5 meV is essentially temperature independent, revealing no
evidence for the Lorentzian-like paramagnetic scattering above
TN observed in Cr [20]. (b) Temperature difference spectra us-
ing T ¼ 280 K scattering as background. The data again show
little evidence of critical scattering at @! ¼ 1 meV. (c) Q scans
at @! ¼ 1 meV at different temperatures. We speculate that
the slight increase in overall scattering at 240 K from 280 K
shown in (e) is due to weakly correlated paramagnetic spins.
(d) @! ¼ 10 meV spin-wave excitations at 160 and 200 K
obtained on BT-7. (f) @! ¼ 16 meV spin-wave excitations at
7 and 160 K obtained on HB-1. The intensity increase is due to
the Bose population factor.
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that LaFeAsO is in proximity to a Mott insulator [21], and
the AF order is a signature of local physics and electron
correlations [24,31]. Another heavily debated issue is the
first [29] or second [28] order nature of the simultaneous
structural or magnetic phase transition in SrFe2As2.

If the observed AF order in SrFe2As2 originates from
Fermi surface nesting similar to the SDW order in Cr, the

velocity of the spin waves c should be c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vevh=3

p
,

where ve and vh are the electron and hole Fermi velocities,
respectively [20]. The dispersion relation is then @! ¼ cq
where q is the magnitude of the momentum transfer away
from the Bragg position. For Cr, the spin-wave velocity is
measured to be c ¼ 851( 98 meV "A [20]. In addition,
there are strong spin-spin correlations in the paramagnetic
state where the dynamic structure factor Sðq; @!Þ can be
described by the product of a Gaussian centered at the
SDW ordering wave vector and a Lorentzian in energy,
or Sðq; @!Þ ¼ S0ðTÞe%#=2$2ð@!=kBTÞ=½ðð@!Þ2 þ #Þ,
ð1% e%@!=kBTÞ+, where $ and # are the Gaussian and
Lorentzian widths, respectively [20]. At temperatures as
high as 500 K (T ¼ 1:6TN), one can observe a clear
resolution-broadened Lorentzian centered at @! ¼
0 meV with # ¼ 15:6 meV [20]. For comparison, there
is no evidence of a Lorentzian-like quasielastic scattering
in SrFe2As2 even at T ¼ 1:09TN . The lack of critical
scattering both below and above TN , together with the
fact that there is also an abrupt structural distortion occur-
ring at the same temperature and observed thermal hys-
teresis [15,16,28,29], is consistent with the AF phase
transition being first order in nature.

To compare the observed exchange couplings in Fig. 1
and those expected from SDW excitations in a nested
Fermi surface, we note that Fermi velocities estimated
from the local density approximation calculations for
BaFe2As2 [32] are ve ¼ 2:2 eV "A and vh ¼ 1:2 eV "A.
Assuming BaFe2As2 and SrFe2As2 have similar Fermi
velocities, the expected spin-wave velocity is then c&
0:94 eV "A. However, since angle resolved photoemission
spectroscopy (ARPES) experiments on BaFe2As2 [33]
show that the bandwidth is strongly renormalized, the
larger Fermi velocities in electron and hole pockets are
ve - vh & 0:5 eV "A. These values would give c&
0:29 eV "A. Using smaller Fermi velocities would yield
half of the larger values or c& 0:15 eV "A. Within the local
moment effective J1a % J1b % J2 model, the spin-wave
velocity is given by c ¼ ðJ1a þ 2J2Þa=2 eV "A. From our
measured J1a þ 2J2 ¼ 100( 20 meV, c& 0:28 eV "A
which is also fairly close to the ARPES results.
Therefore, our present data do not allow an unambiguous
distinction between localized and itinerant description of
the AF order in SrFe2As2 in terms of the spin-wave
velocity.

In summary, we carried out inelastic neutron scatter-
ing experiments to study low energy spin-wave excitations
in SrFe2As2. The low-temperature spectrum consists of

a Bragg peak, a spin gap, and sharp spin-wave excita-
tions at higher energies. Using a simple Heisenberg
Hamiltonian, we find J1a þ 2J2 ¼ 100( 20 meV, Jz ¼
5( 1 meV, and Js ¼ 0:015( 0:005 meV. On warming
across TN , there is weak critical scattering and spin-spin
correlations in the AF wave vector region explored in the
paramagnetic state, different from the paramagnetic SDW
excitations in Cr. These results are consistent with the AF
phase transition in SrFe2As2 being first order in nature.
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