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derive explicit expressions for this transformation. We also discuss variations of the original bond-propagation
procedure within the larger context of Y �Y reducibility and discuss the relation of this class of algorithm to
other algorithms developed for Ising systems. We conclude with a discussion on the outlook for applying
similar algorithms to other models.
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I. INTRODUCTION

For nearly 80 years, Ising models have given valuable
insight into phase transitions and critical phenomena in mag-
nets, alloys, and many other systems. Random-bond Ising
models �RBIMs�, in particular, are often used to study frus-
tration and spin-glass behavior, and they are closely related
to neural networks and information theory.1 In Ref. 2, we
presented a numerically exact3 algorithm for computing the
partition function and correlation functions in a class of two-
dimensional �2D� Ising models, which works for any planar
network of Ising spins with arbitrary bond strengths but
without applied fields in the bulk. Applications include
RBIMs �including ±K disorder, Gaussian disorder, site dilu-
tion, and bond dilution� and geometric frustration as in the
case of triangular Ising antiferromagnets. Here, we show
how to extend the algorithm to directly calculate thermody-
namic quantities such as the internal energy.

Since its introduction in 1925, many exact results have
been found for regular 2D Ising models �i.e., those with
translational symmetry in two directions�. There has been
continued interest in random-bond Ising models, which have
more complexity because of the need to average not only
over all spin configurations but also over all configurations
of bond strengths. Approximate analytic methods can give
misleading or conflicting results, so numerical calculations
play an important role in the field.

Numerical methods for 2D RBIMs have developed along
several lines. Onsager’s original solution using operator tech-
niques generalizes to the fermion-network method of Merz
and Chalker.4 The Ising partition function is related to the
number of dimer coverings �perfect matchings� of a modified
graph and hence to the problem of computing a determinant
or Pfaffian;5,6 this approach was applied to RBIMs by Saul
and Kardar7,8 and by Galluccio et al.9 The fastest of these
algorithms9 takes of order O�N3/2� time for a network of N
spins. Algorithms in this class have the disadvantage that one

must first map to fermions or dimers before the model can be
solved.

A different line of development involves the Y-� and �-Y
transformations for the partition functions of Ising
models,10,11 operating directly in the spin basis, without the
need to map to fermion or dimer models. In a Y-� �or star-
triangle� transformation, three Ising spins connected by
bonds to a central spin can be converted into the same three
Ising spins but without the central spin, now connected by
mutual bonds, in such a way as to preserve the total partition
function of the system. The reverse �-Y transformation can
also be done so as to preserve the partition function. For
networks which are Y �Y reducible, one can then compute
the partition function Z at a given temperature using a suit-
able sequence of such transformations. Colbourn et al.12 sug-
gested using the Feo-Provan13 Y �Y reduction method for
general networks, which takes O�N2� time, where N is the
number of nodes in the network �i.e., spins�. Frank and Lobb
invented the bond-propagation algorithm14 �a form of Y �Y
reduction� for 2D resistor networks which takes O�N3/2� time
for square lattices �grid graphs�.15 They also suggested an
extension to Ising models. Recently, we developed and
implemented the Ising bond-propagation algorithm.2 The al-
gorithm executes in O�N3/2� time for most planar networks of
interest and in N ln N time for dilute models near
percolation,14 making it the fastest method for computing the
Ising partition function and correlation functions near the
percolation threshold. In this paper, we derive the transfor-
mations necessary to implement the algorithm on derivatives
of the partition function, allowing for fast, direct, and exact
calculation of thermodynamic quantities. We also discuss the
relation of this class of algorithm to graph theory as well as
to other methods for Ising systems.

The outline of this paper is as follows. In Sec. II, we
introduce the models to which the algorithm is applicable. In
Sec. III, we derive the network transformations, most notably
the Y-� and �-Y transformations, that are the building
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blocks of the bond-propagation algorithm �BPA� for Gauss-
ian models �such as resistor networks� as well as Ising mod-
els, including new forms of the transformations which have
improved numerical stability in the latter case. In Sec. IV, we
describe some variations of the algorithm. In Sec. V, we
show that the BPA can be used to compute derivatives of the
Ising partition function directly, and we derive these trans-
formations for the first derivative with respect to tempera-
ture. In Sec. VI, we discuss practical issues such as the
strengths and limitations of the BPA, as well as the outlook
for application of similar algorithms to other models.

II. MODELS

Y �Y reduction is applicable to both Gaussian models
�such as resistor networks� and Ising models. We define a
“Gaussian model” in statistical mechanics as one whose ac-
tion S����� is bilinear in the field variables �, which may be
real, complex, or Grassmannian,

eS����� = exp �
ij

Kij�i
*� j . �1�

This action also applies to dynamical models that are diago-
nal in frequency space, such as electrical LCR networks in-
volving inductors, capacitors, and/or resistors where the Kij
represent admittances �complex conductances�, and noninter-
acting bosons, fermions, phonons, or magnons on lattices
with hopping amplitudes Kij. In the case of a resistor net-
work, �i is the electrostatic potential at site i.

An Ising model action is a quadratic form in spin vari-
ables �i= ±1 with a symmetric kernel Kij,

eS����� = e−�H����� = exp �
ij

Kij�i� j , �2�

where K=�K̃ are dimensionless Ising couplings, K̃ are the
physical couplings with dimensions of energy, and �=1/T is
the inverse temperature. This includes various types of
RBIMs such as those with “binary” couplings �Kij = ±K0�,
Gaussian-distributed couplings, and zero couplings �dilute
Ising models�. Such models are often used to study spin
glasses and dilute magnets.

In the Ising system, our goal is to calculate the partition
function,

Z = �
���

eS�����, �3�

correlation functions such as

��i� j	 = Z−1�
���

�i� je
S�����, �4�

and/or thermodynamic functions such as

U = − Z−1 dZ

d�
= Z−1�

���
H�����eS�����. �5�

For Gaussian models such as resistor networks, we aim in-
stead to calculate the effective resistance Rij between two
points in the network.

Computing the partition function of a many-body system
is usually a very difficult problem that involves summing
over a number of configurations that is exponential in system
size. Even if this is recast into the form of a high-temperature
or low-temperature series, it is still usually the case that one
needs to sum over a large number of graphs, or count a large
number of graph embeddings, using some amount of brute
force. Treatments based on successive elimination of spins
are often limited because integrating out spin degrees of free-
dom tends to generate longer range couplings or multispin
interactions such as three-spin couplings. Another approach
is real-space decimation, which is approximate because one
has to discard most interactions beyond a certain level of
complexity.

There are some nice exceptions: for Gaussian models and
Ising models on planar networks,16 it is possible to reduce an
entire network by successive Y-� and �-Y transformations,
local moves which never induce multispin interactions. Thus,
throughout the whole procedure, the system can be described
just by pairwise interactions; therefore, it is useful to adopt
the language of graph theory and represent it by a network,
with nodes �vertices�, edges �bonds�, and edge weights �cou-
plings�. The next section describes transformations that can
be used in the reduction of such a “statistical mechanics net-
work.”

III. STAR-MESH AND MESH-STAR TRANSFORMATIONS

A. Gaussian models

For pedagogical reasons, we first review Gaussian models
�which include resistor networks as a special case�.17 We
show how to eliminate any node of a Gaussian model via a
star-mesh transformation regardless of its coordination num-
ber. Consider the network in Fig. 1 described by an action
S��0 ,�1 , . . . ,�N� containing bilinear couplings Kij�i

*� j as
well as a constant “free energy” term F. The variable �0 can
be eliminated by Gaussian integration, leading to a new ef-
fective action S���1 , . . . ,�N� with parameters F� and Kij� :


 �d�0�exp S��0,�1, . . . ,�N�

=
 �d�0�exp�F + �
i=0

N

�
j=0

N

Kij�i
*� j�

= exp
F + � ln
− 1

K00
+ �

i=1

N

�
j=1

N �Kij −
Ki0K0j

K00
��i

*� j�

K01

K23 K′

23

φ1

K02

K31 K′

31

φ2

K03

K12 K′

12

φ3

φ0

FIG. 1. Elimination of an N-degree node, illustrated for N=3.
Diagonal couplings K11,K22,K33 correspond to loops �edges con-
necting a node to itself� and have been omitted.

LOH, CARLSON, AND TAN PHYSICAL REVIEW B 76, 014404 �2007�

014404-2



= exp�F� + �
i=1

N

�
j=1

N

Kij��i
*� j� = exp S���1, . . . ,�N� ,

�6�

where ��d����
d�R��d�I��

� and �=1 in the case where � are
complex variables; similar expressions exist for real � and
Grassmannian �. The integration generates additive changes
to the free energy, �F=F�−F, and to the couplings, �Kij
=Kij� −Kij:

�F = � ln
− 1

K00
, �7�

�Kij = −
Ki0K0j

K00
, i, j = 1,2,3, . . . ,N . �8�

Equation �8� contains only algebraic operations—addition,
multiplication, and division—and it is homogeneous, i.e., in-
variant under multiplication of all K’s by the same constant.
In fact, Eq. �8� corresponds to row and column subtractions
on the matrix Kij; the elimination of �0 by Gaussian integra-
tion is closely related to the procedure of Gauss elimination
in linear algebra. The above derivation is valid even if the
variables �1 , . . . ,�N are coupled to external fields or addi-
tional variables; these extra terms simply cancel out on both
sides of Eq. �6�.

Node elimination corresponds to the “star-mesh transfor-
mations” illustrated in Fig. 2 and defined as follows. An
N-degree star-mesh transformation eliminates a node of co-
ordination number N, introducing N�N−1� /2 edges between
its neighbors. A mesh-star transformation is the inverse,
which does not always exist.

For Gaussian models, the star-mesh formula is

Kij� = − Ki0K0j/K00, i, j = 1,2,3, . . . ,N . �9�

In the special case of a resistor network, the off-diagonal
elements of the kernel are equal to the conductances, Kij
=Gij, and the diagonal elements are given by a sum rule
Kii=−� j=1

N Gij, so the star-mesh formula becomes Gij�
=Gi0G0j /� j=1

N G0j. For N=2, this corresponds to the familiar
series reduction of conductances. For N=3, it reduces to the
Y-� transformation,

G12� = G01G02/�G01 + G02 + G03� �cycl.� , �10�

where “cycl.” indicates additional equations in which the in-
dices 1,2,3 are cyclically permuted. Equation �10� can be
inverted to give the �-Y transformation, which is most easily
written in terms of the resistances R=1/G:

R01 = R31� R12� /�R31� + R12� + R23� � �cycl.� . �11�

The equations for node-voltage analysis of a planar electrical
network are the same as those for loop-current analysis of the
dual network, which is obtained by interchanging node volt-
ages Vi with loop currents I	, and conductances Gij joining
adjacent nodes with resistances R	
 separating adjacent
loops. Thus, the similarity between Eqs. �10� and �11� is no
coincidence.

For computer implementation, it may be preferable or
necessary to supplement the above formulas by formulas for
special cases,14 involving zero couplings �opens� or infinite
couplings �shorts�. Assuming that floating-point overflows
never occur, the following rules are sufficient:

YDelta��,G1,G2� = �0,G2,G1� , �12�

DeltaY�0,G1,G2� = ��,G2,G1� , �13�

DeltaY��,G1,G2� = �G1 + G2,�,�� . �14�

The Gij can be complex numbers representing admittances at
a particular frequency, in which case the transformations in-
volve complex arithmetic.

B. Ising models

For Ising networks, one may attempt to derive a star-mesh
transformation in a similar way, integrating out a spin �0 to
generate an effective action S� with parameters F� and K� to
be determined �see Fig. 2�:

�
�0=±1

eS��0,�1,. . .,�N� = eS���1,. . .,�N�, ∀ �1 . . . �N, �15�

� �
�0=±1

eF+�i=1
N K0i�0�i = eF�+�i=1

N �j=i+1
N Kij��i�j . �16�

Because �1 , . . . ,�N can each take the values ±1, there are 2N

equations that need to be satisfied. Due to spin-flip symme-
try, only 2N−1 of these are independent. For N�4, the system
of equations is overdetermined, with no solution. For ex-
ample, for N=4, there are eight independent equations in
seven unknowns F�, K12� , K13� , K14� , K23� , K34� , K34� ; the true
effective action S� contains a four-spin interaction of the

J01

J01 J02

Elimination of
dead end, pendant,
or dangling bond

Series reduction,
decoration−iteration
transformation

Y−Delta, Y−nabla,
wye−delta,
star−triangle
transformation,
Yang−Baxter equations

4

1

2 J12

0

StarN Mesh

Elimination of
free spin(empty)

Transformation name

Star−square,
cross−tetrahedron
transformation

3
J02

J01 J03 J12 J23

J31

FIG. 2. Star-mesh transformations for various N. Circles repre-
sent nodes and lines represent edges; the filled node is the one being
eliminated.
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form K1234� �1�2�3�4 that does not fit within the network for-
malism. It is futile to keep track of such multispin terms
because their number can grow to O�2N�.

For N=3, however, there are four independent equations
in four unknowns F�, K12� , K13� , K23� , so a Y-� transformation
exists10 such that

�
�0

eF+K01�0�1+K02�0�2+K03�0�3

= 2eF cosh�K01�1 + K02�2 + K03�3�

= eF�+K23� �2�3+K31� �3�1+K12� �1�2. �17�

Writing �F=F�−F and the new couplings Kij� in terms of the
old couplings Ki0,

2 cosh�K01�1 + K02�2 + K03�3�

= e�F+K23� �2�3+K31� �3�1+K12� �1�2, ∀ �1,�2,�3,

��
a0 = 2 cosh�+ K01 + K02 + K03� = e�F+K23� +K31� +K12�

a1 = 2 cosh�− K01 + K02 + K03� = e�F+K23� −K31� −K12�

a2 = 2 cosh�+ K01 − K02 + K03� = e�F−K23� +K31� −K12�

a3 = 2 cosh�+ K01 + K02 − K03� = e�F−K23� −K31� +K12� ,
�

���F = ln a0
1/4a1

1/4a2
1/4a3

1/4

K23� = ln a0
1/4a1

1/4a2
−1/4a3

−1/4 �cycl.� ,
� �18�

where ai are functions of K0i as above.
For computer implementation, it is preferable to write the

Ising action as

eS����� = const z�
�ij	

kij
�1−�i�j�/2, �19�

where z=eF and kij =e−2Kij. In this representation, the Y-�
transformation is

YDelta�k1,k2,k3� = �k23,k31,k12;�z�

where

�z = 1 + k1k2k3,

z1 = k1 + k2k3 �cycl.� ,

b = �z1z2z3/�z ,

k23 = b/z1 �cycl.� , �20�

where we have written k0i�ki and �z=e�F �and omitted
primes on k23, etc.�. The transcendental functions �exp, log,
and cosh� have been replaced by algebraic functions ��, 
,
�, and ��, which are quicker to evaluate and have fewer
complications arising from multivaluedness. Furthermore,
infinite ferromagnetic couplings K=� �“shorts” in the lan-
guage of Ref. 14� are readily represented by k=0.

The �-Y transformation is equivalent to a Y-� transfor-
mation in the dual representation using Syozi’s “cyclic
change of lattices:”11

DeltaY�k23,k31,k12� = �k1,k2,k3�

where

p1 = dual�k23� �cycl.� ,

�p23,p31,p12� = YDelta�p1,p2,p3� ,

(a) A single bond propagation move

(b) Lattice reduction

FIG. 3. The bond-propagation algorithm in the original form invented by Frank and Lobb. �a� A single bond-propagation move consists
of a Y-� transformation followed by a �-Y transformation. �b� To reduce a finite square lattice, first, a corner node is eliminated by series
reduction, producing the first diagonal bond, which is then propagated diagonally down and to the right until it is “absorbed” at the opposite
edge. Other corner nodes are eliminated in the same way.
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k1 = dual�p23� �cycl.� , �21�

where the duality relation is the Möbius transformation
dual�k�= 1−k

1+k . However, this approach does not give an ex-
pression for the free energy change �F,10 and we have found
that a direct implementation of Eq. �21� is susceptible to
roundoff error. The scheme below has better numerical per-
formance:

x1 = 2k31k12�1 − k23
2 � �cycl.� ,

y1 = 1 + k31
2 k12

2 − k12
2 k23

2 − k23
2 k31

2 �cycl.� ,

v = �y1
2 − x1

2,

k1 = x1/�y1 + v� or �y1 − v�/x1 �cycl.� ,

�z = 1 + k1k2k3. �22�

The two expressions for k1 are formally equivalent; the
choice depends on which one is numerically more stable
�i.e., avoids subtraction of similar quantities�.

Equations �20� and �22� are preferable to those in Refs. 2
and 12, because they each contain only one square root and
have been optimized to reduce roundoff error. Both transfor-
mations are one-to-two mappings by virtue of the square
roots, whose signs can be chosen arbitrarily.18 For the �-Y
transformation, this reflects the Z2 symmetry of the action:
for a given Y, one can obtain an equivalent Y by flipping the
signs of �0, K01, K02, and K03 simultaneously. There is no

clear physical interpretation of the double valuedness of the
Y-� transformation.

Setting one or more of the ki to 1 in Eqs. �20� gives the
star-mesh formulas for N=2,1 ,0:

N = 2: k12 =
k1 + k2

1 + k1k2
, z0 = 1 + k1k2, �23�

N = 1: z0 = 1 + k1, �24�

N = 0: z0 = 2. �25�

The N=0 case �integrating out a free spin� simply increases
the constant free energy term by ln 2, i.e., by 1 bit.

The special cases below are useful for computer imple-
mentation. They are equivalent to Eq. �14�, with G replaced
by K:

YDelta�0,k1,k2� = �1,k2,k1� ,

DeltaY�1,k1,k2� = �0,k2,k1� ,

DeltaY�0,k1,k2� = �k1k2,0,0� . �26�

2x23x3

FIG. 4. Reduction of a triangular lattice of side L to one of side
L−1 using 1

2L2 bond propagations and L series reductions.

FIG. 5. A cylinder, when viewed in perspective from one end, is
equivalent to an annulus, which is planar and hence Y �Y reducible.

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

L

M

A

B

C

A’

B’

C’

B B’

C C’

A A’P
B B’Q B B’Q

A A’P
B B’Q

L − 1

FIG. 6. �Color online� Bond propagation for cylindrical bound-
ary conditions, illustrated for a cylinder of circumference M =5 and
length L�M. Points A� ,B� ,C� are the periodic images of A ,B ,C.
The procedure starts at �a� with a Y-� transformation at the bottom
row. The resulting network is topologically equivalent to network
�b�. Propagating the two diagonal bonds in �b� all the way to the far
end of the cylinder would lead to an algorithm requiring O�L2M�
time. For a long cylinder with L�M, this is inefficient. It is better
to propagate the diagonal bonds just far enough �c� so that only two
nodes remain in the bottom row, as in �f�. Then, since A and A� are
equivalent, the bond AP can be combined in parallel with PA�.
Subsequent series reductions lead to �h�. We can now propagate the
diagonal bonds back downward until they disappear at the bottom
edge of the network, leaving a cylinder of length L−1. Repeating
this process allows us to eliminate an entire cylinder in O�LM2�
time.
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IV. BOND-PROPAGATION PROCEDURE

The transformations derived in the previous section can
be used to reduce a network �i.e., eliminate all or nearly all
its nodes� and hence to calculate the partition function or
effective coupling�s�. Although an inefficient method, Gauss-
ian models can be reduced simply by eliminating the nodes
one by one, in any order, using the N-star-mesh transforma-
tion, Eq. �9�. In contrast, for Ising models, a general star-
mesh transformation does not exist. However, certain net-
works can be reduced using only N=3,2 ,1 ,0 star-mesh and
mesh-star transformations; these are known as
Y �Y-reducible networks. The bond-propagation algorithm is
an efficient example of Y �Y reduction.

A. Original bond-propagation algorithm

Gaussian models and Ising models on square lattices19

can be reduced by the bond-propagation procedure2,14 de-
picted in Fig. 3. A single bond-propagation move is illus-
trated in Fig. 3�a�. First, a �-Y transformation is performed
on the upper left � of Fig. 3�a�. This introduces one new
node. The new node is now effectively shifted so as to re-
place the node to its lower right, a “move” which does not
change the topology of the network. Then, a Y-� transfor-
mation is used to convert the lower right Y into a �, remov-
ing a node. In this way, any diagonal bond can be “propa-
gated” into a diagonally adjacent plaquette. The prescription
originally implemented in Ref. 14 is shown in Fig. 3�b�.
Starting from the upper left corner in Fig. 3�b�, a series re-
duction is used to convert the corner into a diagonal bond.
Then, using successive bond-propagation moves, this diago-
nal bond can be moved diagonally down and to the right
until it annihilates at an edge with open boundary conditions.

For resistor networks, repeated bond-propagation moves
reduce the network to a single string of conductors in series,
which is easily reducible to one effective conductance. For
an Ising model, the effective coupling is related to the cor-
relation function between corner spins: ��11�NN	
=tanh K11,NN. One may also wish to calculate the partition
function in the Ising model; in order to do this, one must
collect the contributions to the partition function during ev-
ery transformation of the network. At the end of the calcula-
tion, after the last spin or node is eliminated, one has the free
energy; the penultimate step gives the effective Ising cou-
pling or effective resistance.

The number of operations necessary to accomplish this is
of the order of O�L3�. Reference 14 showed empirically that
by taking advantage of the early termination of bond propa-
gation on dilute lattices, it is possible to achieve O�L2 ln L�
computational time scaling near the percolation threshold.

B. Useful variants

Figure 4 illustrates a variant of the algorithm for a �finite�
triangular lattice. Here, by embedding the triangular lattice in
a square lattice, we see that one-third of the bonds can be
considered “diagonal” to begin with. If these diagonal bonds
are only propagated out when it is necessary to make space
for other diagonal bonds, then this procedure reduces the size

of the lattice by one unit in every direction.20 Alternatively,
the diagonal bonds can all be propagated out, and then the
BPA can proceed as with any square lattice.

Any planar network can be embedded in a square or tri-
angular lattice �e.g., by inserting “opens” and shorts which
do not change the partition function�, to which the BPA can
then be applied. A network with cylindrical �open-periodic�
boundary conditions is equivalent to an annular network,
which is planar �see Fig. 5�. Figure 6 shows an adaptation of
the BPA for reducing a square lattice with cylindrical bound-
ary conditions in O�LM2� time, where L is the length of the
cylinder and M is the circumference. Networks with toroidal
�doubly periodic� boundary conditions are nonplanar.

Self-averaging quantities can be calculated efficiently in a
strip geometry. For the rectangular strip in Fig. 7, use a series
reduction on the lower left corner to produce the first diago-
nal bond, which is propagated up and to the right until it is
removed from the system. This creates two new corners in
the lower left, to which the same procedure can be applied.
As corners are eliminated, this leaves a string of bonds with
couplings K1

e, K2
e, and so on. For sufficiently large n, the

couplings Kn
e ,Kn+1

e , etc., come from the same distribution.
This facilitates the calculation of self-averaging quantities in
O�LM2� time for a rectangular L
M strip. Figure 8 shows
an example of such a calculation for a RBIM with a Gauss-

M

K3e
eK

Ke1
2

FIG. 7. Bond propagation for strips. From the asymptotic distri-
bution of Kn

e, one can infer quantities such as the asymptotic effec-
tive resistance per unit length as a function of strip width M �for a
random resistor network� or the correlation length �M for a random-
bond Ising model of width M.

0.55 0.6 0.65 0.7 0.75 0.8
T

0.8

1

1.2

1.4

1.6

1.8

2

2.2

M�Ξ

M�8 M�16
M�32

M�64

M�128

FIG. 8. �Color online� Scaled inverse correlation length
M /�M�T� for the square-lattice Gaussian RBIM for M 
L strips at
disorder �K=0.9. Critical properties can be extracted by focusing
on the intersections of these curves and extrapolating to M =� or by
the method of scaling collapse �Ref. 3�. The widest strips �M
=128� had length L�2
105 and took 3300 s to reduce on a
3.20 GHz Pentium 4 CPU.
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ian distribution of bond strengths, P�K̃ij��exp− 1
2
� K̃ij−1

�K
�2

,
with �K=0.9. To save memory, the BPA is run incrementally:
as the bottom rows are eliminated, new rows of random
bonds are added at the top. The first 10M effective couplings
Kn

e are discarded. For the subsequent couplings, we calculate
the duals Rn=− 1

2 ln tanh Kn
e and hence the inverse correlation

length �M
−1=2Rn. �M is the decay length of the correlations

along the strip, i.e., ���1,1�1,L	��e−L/�M for large L. As M
→�, the quantity M /�M�T� tends to infinity or zero away
from criticality, and to a finite value, exactly at criticality. As
described in Ref. 3, critical properties can be extracted by
finite-size scaling of the intersections of the curves or by
collapsing the plots onto a universal curve.

Instead of using the BPA Y �Y reduction procedure, effi-
cient parallel algorithms may be developed by direct Y �Y
reduction on every plaquette simultaneously. The algorithm
shown in Fig. 9 represents the same arithmetic operations as
in Fig. 3 but performed in a different order. Starting with a
triangular lattice, one performs a �-Y transformation on ev-
ery upward-pointing �, thus producing a honeycomb lattice.
One then performs a Y-� transformation on every
downward-pointing Y, producing a triangular lattice one unit
smaller than the original.

Using the cyclic change of lattices introduced by Syozi,11

it is even possible to devise an algorithm involving only Y-�

and duality transformations, as in Fig. 10. The dual of a
planar network is derived by drawing a dual bond cutting
across each bond of the original network, with a bond
strength given by the duality relation dual�G�= 1

G �for resis-
tors� or dual�k�= 1−k

1+k �for Ising bonds�.
The latter two algorithms for Y �Y reduction are very

suitable for parallelization. In Figs. 9 and 10, the O�L3� op-
erations can be distributed among L2 processors so that the

B
A

BB

B BAA

A

3x3 triangular lattice 2x2 triangularHoneycomb

Delta−Y Y−Delta

FIG. 9. Highly parallel algorithm for reduction of a triangular
lattice. Starting with a triangular lattice of A sites, perform �-Y
transformations to insert B sites. On the resulting honeycomb lat-
tice, perform Y-� transformations to eliminate all the A sites. This
gives a triangular lattice that is one unit smaller in every direction.

duality duality

Y−Delta

Y−Delta
B B

B

A
A

B

along boundary
infinite couplings

FIG. 10. A variant of Fig. 9 using duality and Y-� transforma-
tions only. Thick lines represent infinite-strength bonds.
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1 2

3

(b)
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43

(c)

FIG. 11. Irreducible two-, three-, and four-terminal networks.

L nodes

M
nodes

M

L−1 nodes
FIG. 12. �Color online� “Contraction” of an L
M rectangular

strip preserving nodes along short edges, where L�2M. Dotted
lines denote bonds that are removed by Y-� transformations; bold
lines indicate bonds that are propagated out. Each curved arrow
indicates a sequence of bond propagations.
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entire network can be reduced in only O�L� time.

C. Reduction of networks with external terminals

When the BPA is used to compute the effective couplings
between an even number of “external” or “terminal” spins �2,
4, 6,…�, one must take care not to eliminate these terminal
spins. Given any two-terminal planar network, it is always
possible to integrate out all the “internal” spins, reducing the
network to a single bond between the two terminals �Fig.
11�a��. However, for a general four-terminal planar network,
it is not possible to reduce the network beyond the stage
illustrated in Fig. 11�c�, which has one internal spin. It may
be interesting to find irreducible networks with larger num-
bers of terminals �see, e.g., Ref. 21�. A rectangular L
M
strip �L�2M� with terminals all along its short edges can be
reduced to a 2M 
M strip by successive applications of the
procedure in Fig. 12; this may be thought of as a decimation
procedure which preserves the form of the Ising Hamil-
tonian.

For a triangular network with one terminal at each corner,
the algorithm in Fig. 9 leads to an irreducible three-terminal
network �Fig. 11�b��, from which the effective two-terminal
couplings K23, K31, K12 may easily be found. For uncorre-
lated random-bond models, this approach produces effective
couplings for three disorder realizations for the price of one.

V. BOND PROPAGATION FOR CALCULATING
DERIVATIVES OF THE PARTITION FUNCTION

The algorithm described above �and its variants� allows us
to calculate the numerical value of the partition function

Z��� at one value of �. To compute other thermodynamic
quantities such as the mean energy U, one approach is to
calculate Z at closely spaced values of � and perform nu-
merical differentiation. This is not appealing because while
the algorithm produces near-machine-precision values for Z,
this would yield only approximate values for U. We now
show that it is, in fact, possible to extend the bond-
propagation algorithm to compute derivatives of Z directly,
i.e., without numerical differentiation.

The quantity U=− d
d� ln Z��� can be computed from

− �ZU = �
���

S�����eS����� = �
���

��
�ij	

Kij�i� j�exp �
�ij	

Kij�i� j .

�27�

In order to use the BPA to calculate this quantity directly, we
develop Y-� and �-Y transformations which preserve this
quantity. First, consider a Y with terminal spins �1, �2, �3
and central spin �0. In fact, we can solve a more general
expression, in which the bond strengths in the prefactor can
differ from those in the exponent, such that the Y is described
by eight parameters A, L01, L02, L03 and F, K01, K02, K03:

C = �
��1,2,3,. . .�

�
�0

�cext + A + L01�1�0 + L02�2�0

+ L03�3�0�eSext+F+K01�1�0+K02�2�0+K03�3�0. �28�

In the above expression, the quadratic terms in the prefactor
and exponent not involving �0 have been collected in the
functions cext��1 ,�2 , . . . � and Sext��1 ,�2 , . . . �. Factorizing
and evaluating the sum over �0,

�29�

We wish to find the new parameters A�, L23� , L31� , L12� and F�, K23� , K31� , K12� of the equivalent � such that

�30�

where �A=A�−A and �F=F�−F. Comparing Eqs. �29� and
�30� suggests equating the two terms inside the braces sepa-
rately. Equating the first term leads to

2 cosh�K01�1 + K02�2 + K03�3�

= e�F+K23� �2�3+K31� �3�1+K12� �1�2, ∀ �1,�2,�3, �31�

which is identical to Eq. �18�. Equating the second terms in
the braces in Eqs. �29� and �30� gives

2�L01�1 + L02�2 + L03�3�sinh�K01�1 + K02�2 + K03�3�

= ��A + L23� �2�3 + L31� �3�1 + L12� �1�2�


e�F+K23� �2�3+K31� �3�1+K12� �1�2, ∀ �1,�2,�3. �32�
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We can now use Eq. �18� to rewrite Eq. �32� as

2�L01�1 + L02�2 + L03�3�sinh�K01�1 + K02�2 + K03�3�

= ��A + L23� �2�3 + L31� �3�1 + L12� �1�2�2 cosh�K01�1 + K02�2 + K03�3�, ∀ �1,�2,�3, �33�

���A + L23� �2�3 + L31� �3�1 + L12� �1�2�

= �L01�1 + L02�2 + L03�3�tanh�K01�1 + K02�2 + K03�3� , �34�

���A + L23� + L31� + L12� = u0 = �+ L01 + L02 + L03�tanh�+ K01 + K02 + K03�
�A + L23� − L31� − L12� = u1 = �− L01 + L02 + L03�tanh�− K01 + K02 + K03� �cycl.� ,

� �35�

���A = �u0 + u1 + u2 + u3�/4
L23� = �u0 + u1 − u2 − u3�/4 �cycl.� ,

� �36�

where ui are functions of L0i and K0i as defined above.

This Y-� transformation can be inverted to give �-Y
transformation. First, compute K01, K02, K03 using Eq. �22�.
Then, let

�A =
�c0 − c1 + c2 + c3�L23� + cycl.

− c0 + c1 + c2 + c3
,

L01 =
�c0 − c1��c2 + c3�L23� + �c1c2 + c0c3�L31� + �c3c1 + c0c2�L12�

− c0 + c1 + c2 + c3
�cycl.� , �37�

where

c0 = coth�K01 + K02 + K03� ,

c1 = coth�− K01 + K02 + K03� �cycl.� . �38�

Equations �20�, �22�, �36�, and �37� can be used in the bond-
propagation algorithm �or any other Y �Y reduction scheme�
to compute the mean energy U of an Ising network directly,
without numerical differentiation. Note that since the trans-
formations which preserve Z are not the same as those which
preserve its derivative Z�, obtaining U=−Z� /Z requires two
separate bond-propagation calculations: one to calculate Z;
the other to calculate Z�. It may be possible to calculate the
heat capacity and other higher derivatives of Z in a similar
manner.

VI. DISCUSSION

We have found that bond propagation generally gives an-
swers to high accuracy �close to machine precision�, pro-
vided that one uses a careful implementation that avoids
overflow and underflow and minimizes roundoff error, espe-
cially in the case of large systems, low temperatures, or frus-
tration. We discuss specific cases below.

A. Ferromagnetic models

The algorithm works rather straightforwardly for ferro-
magnetic Ising models where all the Kij are positive. The

Y-� and �-Y transformations should be implemented in a
way that minimizes roundoff error, as in Eqs. �20� and �22�.
For large systems in the ferromagnetic phase �L�103�, the
partition function Z may cause floating-point overflow,
which can easily be dealt with by storing F=ln Z instead.
The couplings themselves kij may also underflow, in which
case, it may be necessary to use an alternative representation
to store the couplings and perform the transformations or to
change the order of the bond propagations.

B. Dilute models

Applying bond propagation to dilute models containing
zero couplings may generate infinite couplings, as pointed
out by Frank-Lobb. We have confirmed that this can be suc-
cessfully dealt with using Eqs. �14� or �26�.

C. Frustration

All couplings Kij in a physical Ising model must be real
valued. The Y-� transformation, Eq. �20�, preserves this
property, but the �-Y transformation, Eq. �22�, can generate
complex-valued couplings. This happens if the argument of
the square root is negative �v2=y1

2−x1
2�0�, i.e.,

�1 + k23k31 + k31k12 + k12k23��1 + k23k31 − k31k12 − k12k23�


�1 − k23k31 + k31k12 − k12k23�


�1 − k23k31 − k31k12 + k12k23� � 0. �39�
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This “frustration inequality” can be taken as the definition of
a “frustrated �.”22 Frustration occurs in �’s where all three
couplings have similar magnitudes and one or three or them
are antiferromagnetic �Kij �0, kij �1�. The BPA still works
for frustrated systems provided that complex arithmetic is
used. Despite the occurrence of complex intermediate cou-
plings, we have found that the value of the partition function
emerging from the entire calculation is real, as expected,
with a small imaginary part arising from roundoff error.

The models typically studied in the literature are random-
bond Ising models with bond strengths picked independently
from the same distribution, P�K�. The two most common
models are the binary �±K0� RBIM, with P�Kij�
= �1− p���Kij −K0�+ p��Kij +K0�, where p is the concentra-
tion of antiferromagnetic couplings, and the Gaussian RBIM,
with P�Kij��exp− 1

2
� Kij−K0

�K
�2

.
The BPA works well for the Gaussian RBIM. For the

binary RBIM, certain disorder realizations contain perfectly
frustrated plaquettes; these cause the BPA to generate infinite
and zero couplings, which then lead to indeterminate results.
This is due to singularities in the function represented by the
bond-propagation procedure �the composition of all the Y-�
and �-Y transformations�. These can be avoided using per-
turbations away from perfect frustration, including roundoff
error itself. Such perturbations may be relevant in a
renormalization-group sense, changing the universality class;
if the scaling flow is weak, it may still be possible to obtain
accurate results this way. Introducing perturbations this way
is acceptable as long as the systematic error it produces does
not exceed the random statistical error from disorder averag-
ing, which is an inevitable part of numerical calculations on
RBIMs. At very low temperatures, roundoff error may be-
come an issue for both types of RBIM.

D. Comparisons with other algorithms

Gaussian models �including resistor networks� possess
N-star-mesh transformations for all N�1, so there are a large
number of algorithms for reducing them. Below is a com-
parison of the number of multiplications �
� and divisions
��� required to perform various algorithms on Gaussian
models �e.g., resistor networks� on an L
L lattice.

�a� Cramer’s rule: O�L2!� �
�, O�1� ���;
�b� full Gauss elimination: O�L6� �
�, O�L2� ���;
�c� transfer matrices:23,24 O�L4� �
�, O�L3� ���;
�d� banded Gauss elimination: O�L4� �
�, O�L2� ���;
�e� nested dissection:30,31 O�L3� �
�, O�L2� ���; and
�f� bond propagation:14 O�L3� �
�, O�L3� ���.
The last two methods are the fastest, both taking O�L3�

time overall. The nested dissection algorithm developed by
George30 and by Lipton et al.31 is a hierarchical “divide-and-
conquer” method that exploits prior knowledge about the
connectivity of the network. It is quite a general idea and it
can be used with doubly periodic boundary conditions, as
well as for lattices in dimensions d�2, for which the time
requirement is O�L3d−3�. Its drawback is the amount of book-
keeping required. On the other hand, bond propagation,
while slightly more costly in terms of divisions, is simpler to
implement and especially to parallelize �see Sec. IV B�. For

dilute networks near the percolation threshold, bond propa-
gation is even faster, taking O�L2 ln L� time, because many
propagating bonds terminate early. In the context of Gauss-
ian models, bond propagation can be viewed as an efficient
linear algebra method for reducing certain pentadiagonal ma-
trices while preserving their sparsity.

For Ising models, numerically exact polynomial-time
methods only exist in two dimensions.32 Below are operation
counts including addition ���, subtraction ���, multiplica-
tion �
�, division ���, and square roots �3� for selected
methods.

�a� Transfer matrices in the spin basis:33 O�2L� operations
��
� and memory; can be generalized to higher-
dimensional lattices;

�b� fermion-network method:4 O�L4� operations ��
�;
�c� Pfaffian elimination with nested dissection:9 O�L3� op-

erations ��
��;
�d� Y �Y reduction by Feo-Provan algorithm:12 O�L4� op-

erations ���
�3� for general graphs; and
�e� Y �Y reduction by bond propagation:2 O�L3� opera-

tions ���
�3�.
Due to the lack of a general N-star-mesh transformation

for Ising models, nested dissection cannot be applied directly
to the Ising network. Rather, one must first map the Ising
problem to a dimer problem on the Kasteleyn “terminal lat-
tice” which has four nodes for each Ising spin. In two dimen-
sions, the dimer problem maps to a Pfaffian elimination
problem, to which nested dissection can then be applied. In
contrast, the bond-propagation algorithm can be performed
directly in the Ising network representation, with no need to
map to dimers or fermion models.

E. Limitations

Y �Y reduction techniques �of which the bond-
propagation algorithm is one� for statistical mechanics mod-
els rely on two criteria: �a� Y �Y reducibility of the graph on
which the model is defined and �b� the existence of Y-� and
�-Y transformations that preserve some aspect of the model
at hand. We first discuss criterion �a�. The Robertson-
Seymour theory of forbidden minors and obstruction sets
�see Ref. 34 and references therein� implies the following
relationships among various sets of graphs:

�Forests� � �Outerplanar graphs�

� �Series-parallel-reducible graphs� � �Planar graphs�

� �Y � Y-reducible graphs�

� �Linklessly embeddable graphs� . �40�

In particular, this shows that all planar graphs are Y �Y re-
ducible. However, it is also true that nearly all “sufficiently
large” nonplanar graphs with crossing number 2 or greater
are not Y �Y reducible. This means that Y �Y approaches
such as bond propagation are unable to completely reduce
three-dimensional �3D� lattices or even 2D “pyrochlore” lat-
tices �lattices of edge- or corner-sharing tetrahedra�. For ex-
ample, a large enough 3D network with simple cubic sym-
metry has as a minor the Petersen graph KG5,2. Since KG5,2
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is a forbidden minor for Y �Y reduction, the simple cubic
lattice is not amenable to the BPA nor to any algorithm based
purely on Y �Y reduction. Since general 3D lattices contain
the simple cubic lattice as a minor, they are not Y �Y reduc-
ible either. As a further example, although diagonal bonds
can be made to propagate on, e.g., a tiling of three space by
truncated octahedra, this 3D lattice is not reducible by bond
propagation. Of course, even for networks that are not com-
pletely Y �Y reducible, it may be useful to perform partial
Y �Y reduction before resorting to more expensive computa-
tional techniques.

We now turn to criterion �b�. In Secs. III and V, we de-
rived Y-� and �-Y transformations for Gaussian models and
Ising models. These models have the special property that
three-spin interactions are forbidden by symmetry. For most
other models in statistical mechanics, eliminating a three-
coordinated spin generates three-spin interactions which can-
not be described within the network formalism. For example,
consider the Ising model in the presence of magnetic fields hi
�which may be uniform or random� described by the action

eS����� = exp��
�ij	

Kij�i� j + �
i

hi�i� . �41�

Let us integrate out the center spin of a Y and find the effec-
tive action for the resultant � by equating Boltzmann
weights for each of the eight configurations of the outer spins
��1 ,�2 ,�3= ±1�:

�
�0

eS��0,�1,�2,�3� = eS���1,�2,�3�. �42�

If we restrict ourselves to the form of Eq. �41�, there are only
seven possible terms: S�=F+h1�1+h2�2+h3�3+K23�2�3
+K31�3�1+K12�1�2. Therefore, S� must contain a three-spin
interaction K123�1�2�3, and it cannot be written in the same
analytic form as the original action: a Y-� transformation
does not exist.

Table I shows a “feasibility study” for Y-� transforma-
tions for the q-state Potts model, with couplings Kij that tend
to align adjacent spins in the same “direction” in spin space,

eS����� = exp �
�ij	

Kij��i�j
, �i � �1,2, . . . ,q� ∀ i , �43�

a generalized Potts model �where every bond is described by
a matrix Pij representing the weight factors for every combi-
nation of directions of two adjacent spins�,

eS����� = exp �
�ij	

Pij�i�j
, �i � �1,2, . . . ,q� ∀ i , �44�

and the q-state clock model �where q�3�,

eS����� = exp �
�ij	

Kij cos
2�

q
��i − � j� . �45�

For these models there are, again, more equations than pa-
rameters, so exact Y-� transformations do not exist.

In the limit q→�, the clock model becomes the XY
model. This suggests that Y-� transformations do not exist
for XY models nor for other models with continuous spins
�e.g., classical Heisenberg models�.

This paper has focused on statistical mechanics, but Y �Y
reduction and the BPA also have important applications in
combinatorics and operations research. Exact Y-� and �-Y
transformations exist for the shortest path problem, for the
maximum flow �or minimum cut� problems,13 for counting
spanning trees and perfect matchings,12 and even for 2D
foams in mechanical equilibrium.35 Such transformations do
not exist for network reliability problems,36,37 nor for equi-
librium flow problems with arbitrary potential-flow
relations13 �i.e., electrical circuits composed of elements with
arbitrary nonlinear current-voltage characteristics�. Thus, the
former group of problems can be solved on planar networks
in polynomial time, whereas the latter group cannot. In Table
II, all of the above problems are classified according to the
maximum degree of star-mesh transformations that they sup-
port.

The above examples have been for systems defined on
undirected graphs, i.e., “symmetric” bonds. Y �Y reduction

TABLE I. Degrees of freedom of Y and � subnetworks. For all cases except the standard Ising model,
there are more equations than � parameters, indicating that the effective action contains three-spin interac-
tions and that exact Y-� transformations do not exist.

Type of model Distinct equalities Y parameters � parameters

Ising 4 4 �F ,K01,K02,K03� 4 �F ,K23,K31,K12�
Ising with fields 8 8 �F ,K01,K02,K03,h1 ,h2 ,h3 ,h0� 7 �F ,K23,K31,K12,h1 ,h2 ,h3�
Potts �q�3� 5 4 4

Potts �generalized, q�3� q3 3q2−2 3q2−2

TABLE II. Maximum degree of star-mesh and mesh-star trans-
formations for various models.

Type of model Nmax
star-mesh Nmax

mesh-star

Gaussian models,
resistor networks,
shortest path,
max flow

� 3

Ising model 3 3

Ising with field 2 3

Potts, clock,
XY, Heisenberg,
network reliability

2 2
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�and the BPA� may also be applicable to directed graph prob-
lems such as dynamical Ising cellular automata.38 Further
examples of models with Y-� transformations �or Yang-
Baxter equations� can be found in Ref. 39; the existence of
such transformations is related to the “integrability” of these
models. Note that in systems where exact Y-� transforma-
tions do not exist, approximate Y-� transformations may still
have some use.36

VII. CONCLUSION

In conclusion, we have shown that the bond-propagation
algorithm �BPA� may be applied not only to the partition
function and correlation functions in the Ising model but that
it can also be applied to thermodynamic quantities via trans-
formations which preserve the first derivative of the partition

function. Similar transformations may exist for higher de-
rivatives as well. Since the BPA is a form of Y �Y reduction,
it is limited to networks which are Y �Y reducible. This in-
cludes planar graphs, and the BPA may be applied to Ising
models on planar networks as well as planar resistor net-
works. In general, 3D lattices are not Y �Y reducible, and so
the BPA is not amenable to 3D resistor networks or Ising
models in 3D.

ACKNOWLEDGMENTS

It is a pleasure to thank R. Fisch, E. H. Goins, H. G.
Katzgraber, C. J. Lobb, F. Merz, V. Oganesyan, and J. H. H.
Perk for helpful discussions. This work was supported by
Purdue University and Research Corporation �Y.L.L.� and by
the Purdue Research Foundation �E.W.C.�. E.W.C. is a Cot-
trell Scholar of Research Corporation.

1 H. Nishimori, Statistical Physics of Spin Glasses and Information
Processing �Oxford University Press, Oxford, 2001�.

2 Y. L. Loh and E. W. Carlson, Phys. Rev. Lett. 97, 227205 �2006�.
3 That is, its accuracy is limited by the precision of the floating-

point numbers used in the computation; it suffers from roundoff
error but not statistical error like Monte Carlo methods.

4 F. Merz and J. T. Chalker, Phys. Rev. B 65, 054425 �2002�.
5 P. W. Kasteleyn, J. Math. Phys. 4, 287 �1963�.
6 M. E. Fisher, J. Math. Phys. 7, 10 �1966�.
7 L. Saul and M. Kardar, Phys. Rev. E 48, R3221 �1993�.
8 L. Saul and M. Kardar, Nucl. Phys. B 432, 641 �1994�.
9 A. Galluccio, M. Loebl, and J. Vondrak, Phys. Rev. Lett. 84,

5924 �2000�.
10 R. M. F. Houtappel, Physica 16, 425 �1950�.
11 I. Syozi, in Phase Transitions and Critical Phenomena, edited by

C. Domb and M. S. Green �Academic, New York, 1972�, Vol. 1.
12 C. J. Colbourn, J. S. Provan, and D. Vertigan, Discrete Appl.

Math. 60, 119 �1995�.
13 T. A. Feo and J. S. Provan, Oper. Res. 41, 572 �1993�.
14 D. J. Frank and C. J. Lobb, Phys. Rev. B 37, 302 �1988�.
15 The algorithms in Refs. 25–27 also take O�N3/2� time.
16 For Gaussian models such as Eq. �1�, the partition function Z is

related to the determinant det K, and for planar Ising models, Z
is related to the Pfaffian of the “Kasteleyn terminal lattice,” both
of which may be computed in polynomial time. It is interesting
that these same two models are amenable to the bond-
propagation algorithm that we describe in this paper.

17 See the Appendix of Ref. 39 for a similar discussion.
18 The Ising Y-� and �-Y transformations of Ref. 12 each contain

three square roots, suggesting that there are eight solutions, but
only two of these are valid. In general, the couplings may be
complex, and choosing principal values for the roots does not
guarantee a valid solution: ���=D�AC /BD�AB /CD is not nec-
essarily equal to A as required. The transformations in Ref. 2 are
written such that principal values give a valid solution.

19 We use “lattice” to mean a “finite lattice”—a periodic structure
that has been truncated at a closed bounding surface.

20 Hilhorst et al. �Refs. 28 and 29� used a similar procedure to
derive exact renormalization-group transformations for Ising
models without disorder.

21 D. Archdeacon, C. J. Colbourn, I. Gitler, and J. S. Provan, J.

Graph Theory 33, 83 �2000�.
22 There is an interesting analogy in geometry: the area of a triangle,

A= 1
4
��a+b+c��b+c−a��c+a−b��a+b−c�, must satisfy A2�0,

which leads to “triangle inequalities”—geometrical constraints
on the lengths of the sides of a triangle.

23 B. Derrida and L. de Seze, J. Phys. �Paris� 43, 475 �1982�.
24 B. Derrida and J. Vannimenus, J. Phys. A 15, L557 �1982�.
25 K. Truemper, J. Graph Theory 13, 141 �1989�.
26 I. Gitler, Ph.D. thesis, University of Waterloo, 1991.
27 I. Gitler, report, 1991 �unpublished�.
28 H. J. Hilhorst, M. Schick, and J. M. J. van Leeuwen, Phys. Rev.

Lett. 40, 1605 �1978�.
29 H. J. Hilhorst, M. Schick, and J. M. J. van Leeuwen, Phys. Rev. B

19, 2749 �1979�.
30 A. George, SIAM �Soc. Ind. Appl. Math.� J. Numer. Anal. 10,

345 �1973�.
31 R. J. Lipton, D. Rose, and R. E. Tarjan, SIAM �Soc. Ind. Appl.

Math.� J. Numer. Anal. 16, 346 �1979�.
32 It is easily seen that the BPA �and other numerically exact meth-

ods�, when they apply, is far superior to any form of Monte
Carlo averaging over spin configurations. Bond propagation
gives results to near machine precision �10−12� in O�L3� time.
Given O�L3� time, the most efficient Monte Carlo methods can
generate at most L independent configurations, so the statistical
error will be O�L−1/2�, i.e., about 10−2. Furthermore, Monte
Carlo methods have serious problems for frustrated systems.

33 I. Morgenstern and K. Binder, Phys. Rev. Lett. 43, 1615 �1979�.
34 N. Robertson and P. D. Seymour, J. Comb. Theory, Ser. B 92,

325 �2004�.
35 M. Mancini and C. Oguey, Eur. Phys. J. E 22, 181 �2007�.
36 A. Lehman, J. Soc. Ind. Appl. Math. 11, 773 �1963�.
37 The network reliability problem is more commonly known in

physics as “bond percolation.” The BPA can be used to reduce a
planar network with a particular configuration of “active” bonds,
but it is not possible to automatically average over all bond
configurations based purely on the bond probabilities.

38 G. Odor, Rev. Mod. Phys. 76, 663 �2004�.
39 J. H. H. Perk and H. Au-Yang, Encyclopedia of Mathematical

Physics, edited by J.-P. Françoise, G. L. Naber, and S. T. Tsou
�Oxford: Elsevier, 2006�, Vol. 5, pp. 465–473.

LOH, CARLSON, AND TAN PHYSICAL REVIEW B 76, 014404 �2007�

014404-12


