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Phase fluctuations of the superconducting order parameter play a larger role in the cuprates than in
conventional BCS superconductors because of the low superfluid density rs of a doped insulator. In this
paper, we analyze an XY model of classical phase fluctuations in the high temperature superconductors
using a low temperature expansion and Monte Carlo simulations. In agreement with experiment, the
value of rs at temperature T � 0 is a quite robust predictor of Tc, and the evolution of rs with T ,
including its T-linear behavior at low temperature, is insensitive to microscopic details.

PACS numbers: 74.40.+k, 74.20.Mn, 74.25.Bt
Two classes of thermal excitations are responsible
for disordering the ground state of a superconductor:
amplitude and phase fluctuations of the complex order
parameter. A consensus has not yet been reached on the
relative importance of the two in the high temperature
superconductors, since both are anomalous. The low
superfluid density (phase stiffness) of the doped insulator
implies that phase fluctuations play an unusually large
role [1]. Yet the nodes in the d-wave gap function
support more quasiparticle (amplitude) excitations at low
temperature than in a clean s-wave superconductor.

This paper reports an analytical and numerical study
of the thermal evolution of the in-plane helicity modulus,
gk�T �, of a quasi-two-dimensional classical XY model of
phase fluctuations in a high temperature superconductor
[2]. In doing this, we are ignoring the widely discussed
effects of thermally excited nodal quasiparticles, i.e., spin
1�2 excitations. As discussed below and in Ref. [4], we
believe this neglect is justified because the nodal quasi-
particles are not sensitive to the onset of superconductiv-
ity [5]. As such, the spectral weight removed from the
superfluid density per thermally excited spin is small [6].
We also neglect the quantum dynamics of the phase since,
with sufficient screening, the phase fluctuations are pre-
dominantly classical down to quite low temperature [7].

The calculations focus on the scaled curve,
gk�T ��gk�0� vs T�Tc, and the value of the dimensionless
ratios A1 � Tc�gk�0� and A2 � Tcg

0
k�0��gk�0�. [Here

g
0
k�T � � dgk�T ��dT .] These nonuniversal quantities

turn out to be rather insensitive to microscopic details of
the model, such as the strength of the interplane coupling
and the exact short-distance nature of the interactions, as
shown in Fig. 1 and in the tables. Figure 1 also shows
that the model results agree well with experiment [8],
when the helicity modulus of the model is related to the
in-plane superfluid density rs as determined by

gk�T �
a�

�
h̄2rs�T �

4m�
�

�h̄c�2

16pe2l
2
ab�T �

, (1)
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where a� is the spacing between planes and lab is the
London penetration depth within the CuO2 planes.

There is strong empirical evidence that classical phase
fluctuations determine much of the important physics in
the superconducting state of the high Tc superconductors,
and also some properties of the normal state, especially
in underdoped materials [1]. Most notably, Tc increases
roughly linearly with the zero-temperature superfluid den-
sity [9] [A1 � Tc�gk�0� � 1], whereas the characteristic
energy scale for pairing, Do�2, is both quantitatively large
compared to kBTc and decreases as the doping increases.
Furthermore, angle-resolved photoemission spectroscopy
and other measurements of the superconducting gap re-
veal that pair formation occurs at a crossover tempera-
ture well above Tc [10–12]. It is important to note that

FIG. 1 (color). Superfluid density vs temperature, scaled by
the zero-temperature superfluid density and by Tc, respectively.
Experimental data on YBCO is depicted by the black line, and
is taken from Hardy et al. [8] (The data are essentially the
same for a range of doping concentration.) Our Monte Carlo
results for system size 16 3 16 3 16 are the filled symbols.
Calculations are for two planes per unit cell, with coupling
Jk � 1 within each plane, and J� and J 0

� between alternate
planes, as defined in Eq. (3). Monte Carlo points above Tc
are nonzero due to finite size effects. Except where explicitly
shown, error bars are smaller than symbol size.
© 1999 The American Physical Society
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A2 � Tcg
0
k�0��gk�0� is roughly constant for various ma-

terials and doping concentrations. This implies that the
fluctuations predominantly responsible for the T -linear
dependence of the superfluid density at low T are also
responsible for the ultimate destruction of the supercon-
ducting state at Tc.

The following arguments have been made against this
interpretation of the data: (1) The nonuniversal ratio
A1 � Tc�gk�0� should [13] theoretically lie in the range
4–8, rather than in the 0.5–1 range observed experimen-
tally. (2) For weakly coupled layers, a phase only model
would [14] yield a rs�T � curve that looks like a rounded
Berezinskii-Kosterlitz-Thouless (BKT) discontinuity, un-
like what is seen in experiments. (3) Quantum effects
suppress classical phase fluctuations [15] for temperatures
below the plasma frequency. (4) If pairing occurs in a
substantial range of temperatures above Tc, the effects
of fluctuation superconductivity should be observed, con-
trary to experiment [13].

Our present results show that the classical XY model
is quantitatively consistent with experiments. As can be
seen from the tables, A1 lies in the range 0.6 1.8 for
the wide range of parameters we have explored, consis-
tent with experiment. Figure 1 shows that gk�T � of the
XY model closely matches the experimentally measured
rs�T � curves. The third suggestion has been previously
shown to be incorrect [7], due to screening by the sub-
stantial background normal fluid. Specifically, in a two-
fluid model of a superconductor, the classical model is
reliable down to a classical to quantum crossover tem-
perature which can be well below Tc: Tclass ~ Tc�sN ,
where sN is an average of the optical conductivity of
the normal component in units of the quantum of con-
ductance. The fourth point overlooks the fact that fluc-
tuation superconductivity is only significant close to Tc

where the correlation length is long. In conventional su-
perconductors the observed fluctuations involve amplitude
and phase and are Gaussian, while for the high Tc super-
conductors, true critical fluctuations in the XY universality
class are detected in a remarkably broad range of tempera-
tures [16].

A classical XY model on a tetragonal lattice will be
used to study the effects of phase fluctuations in a quasi-
two-dimensional superconductor at wavelengths that are
long enough for amplitude fluctuations to be unimportant.
The in-plane unit cell area a2

k does not enter into the
evaluation of Tc or the temperature dependence of gk�T �.
Here ak is a short-distance cutoff which will be discussed
at the end of the paper. In general, the interaction
energy, V , depends on the phase difference, uij � ui 2

uj , between nearest-neighbor sites �i, j�. Because of
gauge invariance and time reversal symmetry, V can be
expanded in a cosine series,

V �uij� �
X

n
An cos�nuij� . (2)
The first harmonic, cos�u�, corresponds to the transfer
of one pair of electrons between neighboring cells; each
successive harmonic transfers a higher number of pairs.
We keep only the first two terms in the cosine series for
couplings within a plane, and the first cosine term for the
weaker Josephson coupling between planes.

H � 2Jk
X

�ij�k

�cos�uij� 1 d cos�2uij�	

2
X

�kl��

�Jkl
� cos�ukl�	 , (3)

where the first sum is over nearest-neighbor sites
within each plane, and the second sum is over nearest-
neighboring planes. The coupling, Jk, will be assumed
to be isotropic within each plane and the same for every
plane, but the coupling between planes, Jkl

� , is different
for crystallographically distinct pairs of neighboring
planes. It will be assumed that Jk, J�, and d are positive,
since there is no reason to expect any frustration in the
problem [17], and that d # 0.25, since for d . 0.25 there
is a secondary minimum in the potential for uij � p ,
which is probably unphysical. The sensitivity of various
computed quantities to variations in d in this range is a
measure of the importance of “microscopic details.”

It follows from simple and general considerations that
most features of the thermal evolution of the superfluid
density of YBa2Cu3O72d (YBCO) shown in Fig. 1 are re-
produced by such a model. The critical phenomena are in
the same universality class as the classical 3D XY model,
which is consistent with the observed behavior [16] in
YBa2Cu3O72d within about 10% of Tc. Furthermore, the
helicity modulus is linear in the temperature, as observed
in YBa2Cu3O72d. As first pointed out by Roddick and
Stroud, the T -linear behavior is characteristic of classical
phase fluctuations [18,19]. Indeed, using linear spin-wave
theory, it is straightforward to obtain the first terms in the
low temperature series for g,

gk

a�

�T � � Jk�1 1 4d� 2
a�1 1 16d�
4�1 1 4d�

T 1 O �T2� ,

(4)

where a is a numerical integral which varies from a � 1
in the 2D limit (J� ! 0) to a � 2�3 for J� ! gk�0� �
Jk�1 1 4d� for one plane per unit cell. Note that the
T -linear term is independent of Jk and so is much less
dependent on microscopic parameters (such as doping)
than is gk�0�.

A more quantitative comparison between the classi-
cal model and experimental data can be undertaken by
studying various dimensionless ratios, particularly A1 �
Tc�gk�0� and A2 � Tcg

0
k�0��gk�0�. Here, Tc is computed

numerically by means of the Binder parameter [20] for sys-
tems of size up to 24 3 24 3 24. Errors in Tc are limited
by the resolution with which the Binder crossing point is
computed in each case. The quantities gk�0� and g

0
k�0� are

obtained from Eq. (4).
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TABLE I. Single layer: The dimensionless ratios A1 � Tc�gk�0� and A2 � Tcg
0
k�0��gk�0� which characterize the superfluid

density vs temperature for systems with one layer per unit cell. J� and Tc are quoted in units of Jk.

J� 0 0 0 0.01 0.01 0.01 0.1 0.1 0.1
d 0 0.1 0.25 0 0.1 0.25 0 0.1 0.25
A1 0.89 0.72 0.6 1.1 0.828 0.625 1.324 0.986 0.73
A2 0.22 0.335 0.38 0.27 0.381 0.388 0.3066 0.432 0.437
Tc 0.89 1.01 1.2 1.1 1.16 1.25 1.324 1.38 1.46
Experimentally A2 � 1
2 , and A1 is in the range 0.6–1.3

for underdoped and optimally doped materials. Tables I
and II show the ratios A1 and A2 for various choices of
parameters in the classical XY model. Note that A2 � 1

2
for d not too small, whereas A2 is about a factor of 2
smaller for d � 0. The shape of the rs�T � vs T curves,
as quantified by A2, is remarkably robust, especially if we
compare the cases of d � 0.1 to d � 0.25. The ratio A1 is
a little more sensitive to the value of d, but it is comfortably
in the experimental range for d between 0.1 and 0.25, and
only slightly larger for d � 0. The relative insensitivity of
A1 to d and to the details of the interplane couplings, J�,
demonstrates that when classical phase fluctuations govern
the physics, rs�0� is a quantitatively good predictor of Tc.

Hardy et al. have demonstrated [8] that when
rs�T ��rs�0� is plotted vs T�Tc, for various dopant
concentrations in YBa2Cu3O72d, the data collapse ap-
proximately onto one curve. Since Tc ~ rs�0�, this
amounts to scaling out Tc for both axes. Thus the unique
shape of the normalized rs vs T curve may be attributed
to the existence of a single energy scale, the transition
temperature. We have also used Monte Carlo calculations
to evaluate the superfluid density for 0 , T , Tc. The
results are scaled as in Hardy et al. [8] and compared
with their data in Fig. 1. As anticipated, for d not too
near zero, the model is insensitive to the value of d, and
in remarkable agreement with experiment, considering
that no parameters have been tuned.

A much-discussed feature of the systematics of Tc in
the high temperature superconductors [21] is the observed
increase of Tc within each family of materials with the
number of planes per unit cell, n. Within the classical
phase model, the fact that phase fluctuations lead to a
particularly large suppression of Tc below its mean-field
TABLE II. Double layer: The dimensionless ratios A1 � Tc�gk�0� and A2 � Tcg
0
k�0��gk�0�, which characterize the superfluid

density vs temperature curve, for systems with two layers per unit cell; the two values of J� are between planes within a unit cell
and between unit cells.

J�:J 0
� 1:0 1:0 1:0 1:0.01 1:0.01 1:0.01 1:0.1 1:0.1 1:0.1

d 0 0.1 0.25 0 0.1 0.25 0 0.1 0.25
A1 1.38 1.03 0.78 1.52 1.12 0.83 1.6975 1.252 0.916
A2 0.279 0.402 0.426 0.306 0.437 0.452 0.3318 0.4772 0.4906

J�:J 0
� 0.1:0 0.1:0 0.1:0 0.1:0.01 0.1:0.01 0.1:0.01 0.1:0.1 0.1:0.1 0.1:0.1

d 0 0.1 0.25 0 0.1 0.25 0 0.1 0.25
A1 1.13 0.836 0.645 1.2 0.907 0.675 1.324 0.986 0.73
A2 0.271 0.376 0.394 0.29 0.407 0.411 0.3066 0.432 0.437
614
value (see Table III) leads to an increased sensitivity to
even weak couplings in the third direction. This produces
a strong increase of Tc with n, although possibly not
quite as strong as observed experimentally. However, it
should be noted that other things may change with n; for
example, in a three-plane material, the central plane may
have a different hole concentration than the others.

Mean-field theory is a standard method of estimating
the effects of weak higher-dimensional couplings on the
critical temperature of quasi-one-dimensional or quasi-
two-dimensional systems. For instance, for one plane per
unit cell (n � 1) this approach leads to an implicit equation
for the three-dimensional Tc

x2d�TMF�2J� � 1 , (5)

where x2d�T � is the susceptibility of an isolated plane.
For the case d � 0, we have computed the interplane
mean-field transition temperature, which is also presented
in Table III, using the Monte Carlo results of Gupta and
Baillie [22] for x2d�T �. This mean-field theory always
gives an upper bound to Tc.

Phase fluctuations should also have detectable effects
on other equilibrium properties, such as the specific heat,
the diamagnetic susceptibility, and g�. In contrast to gk,
these quantities depend on ak. The classical XY model at
temperatures T ø Tc has a specific heat per unit area in a
CuO2 plane equal to C � kB�2a2

k. The specific heat [23]
at T � 2 K of good crystals of optimally doped YBCO
is roughly 5 3 1024kB per planar copper; if we assumed
that all of this specific heat were due to phase fluctuations,
it would imply ak � 32 lattice constants.

In the classical XY model ak � ry , where ry is the
radius of a vortex core. Recent muon spin rotation (mSR)
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TABLE III. Variations as a function of the number of planes
per unit cell: The coupling between planes within the unit
cell is J� � 0.1, and between planes of different unit cells is
J 0

� � 0.01, and d � 0. Similar data exist for d . 0. TMF is
the interplane mean-field estimate of Tc obtained as described
in the text.

n 1 2 3 4 `
dr�0�

dT
0.2472 0.2384 0.2365 0.2348 0.2315

Tc 1.09 1.20 1.24 1.26 1.324
TMF 1.111 1.287 1.334 1.361 1.394

measurements [24] have found that ry grows substantially
at low fields, and tends to a zero field value which is on
the order of 100 Å (26 lattice constants) and which is only
weakly temperature dependent nearly up to Tc. Thus, if
we estimate ak using the mSR data, it is consistent to
attribute a large fraction of the low temperature specific
heat to classical phase fluctuations. The contribution
of critical fluctuations to the specific heat near Tc may
also be dominated by classical phase fluctuations, but
a quantitative comparison of the theoretically expected
(nonuniversal) critical amplitudes with experiment is not
straightforward.

Finally, we address the remarkable measurements of the
frequency dependent superfluid density in BSCCO of Cor-
son et al. [25]. Without making any explicit assumptions
concerning the dynamics, we can interpret these results in
terms of a finite size scaling hypothesis, in which we as-
sociate a length scale, L�v�, with the finite measurement
frequency, and

g�T , L� � LxT g̃
L�j�T �� , (6)

where j�T � is the correlation length of the infinite system
at temperature T . Since BSCCO is highly anisotropic, we
follow Corson et al. [25] in assuming that the finite fre-
quency response is essentially two dimensional, in which
case x � 0, and j�T � is infinite for all T , TBKT , the BKT
transition temperature. This implies that g is approxi-
mately frequency independent for T , TBKT and vanishes
exponentially as a function of L�j at temperatures enough
above TKT that L . j�T �. Indeed, g�T , L� was com-
puted numerically for the two-dimensional XY model by
Schultka and Manousakis [3] and we have repeated these
calculations for anisotropic three-dimensional models; the
results confirm that our model nicely accounts for the ob-
servations of Corson et al. [25].
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