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Superconductors with low superfluid density are often dominated by phase fluctuations of the order param-
eter. In this regime, their physics may be described by XY models. The transition temperature Tc of such
models is of the same order as the zero-temperature phase stiffness �helicity modulus�, a long-wavelength
property of the system: Tc=A��0�. However, the constant A is a nonuniversal number, depending on dimen-
sionality and the degree of inhomogeneity. In this Brief Report, we discuss strategies for maximizing A for
two-dimensional XY models; that is, how to maximize the transition temperature with respect to the zero-
temperature, long-wavelength properties. We find that a framework type of inhomogeneity can increase the
transition temperature significantly. For comparison, we present similar results for Ising models.
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There is experimental evidence that many strongly corre-
lated systems such as nickelates, cuprates, and manganites
exhibit some degree of inhomogeneity—spatial variations of
structure, composition, or local electronic properties.20 It is
important, from both scientific and technological points of
view, to understand how such mesoscale variation—whether
ordered or disordered—influences macroscopic properties
such as superconductivity. That is, does inhomogeneity help
or harm superconductivity, or is it a side issue entirely?

Intuition suggests that inhomogeneity should be detrimen-
tal to superconductivity through its association with disorder
or competing orders. However, there are many counterex-
amples. The transition temperatures of Al, In, Sn, and other
soft metals can be increased by going from bulk samples to
grains, films, or layered structures.21 For attractive-U Hub-
bard models, Tc can be increased by making U vary in
space.1,2 This is not too surprising: in BCS theory, the critical
temperature has a strong nonlinear dependence on the attrac-
tion, Tc�e−1/�U; since �e−1/�U��e−1/��U�, favorable spatial
variations in U, if they exist, are strongly amplified. Even for
repulsive-U models, the superconducting gap can be in-
creased by going from a homogeneous two-dimensional �2D�
system to an array of two-leg ladders with strong intraladder
couplings and weaker interladder couplings.3

The microscopic models in Refs. 1–3 deal simultaneously
with the effects of spatially modulated pairing strength and
spatially modulated phase stiffness. To gain physical insight,
it is useful to focus on one effect at a time. Here, we study
phenomenological XY models, i.e., we assume that the pair-
ing energy scale �and the magnitude of the superconducting
gap� are constant in space, and concentrate on the physics of
phase fluctuations.

In this Brief Report, we consider superconductors with
low superfluid density. For such systems, the transition is
dominated by fluctuations of the phase of the superconduct-
ing order parameter, described by an XY model; the super-
conducting Tc is the Berezinskii-Kosterlitz-Thouless4–6

�BKT� transition temperature of the XY model. We numeri-
cally study 2D XY models with inhomogeneous couplings.
We find that although most patterns of inhomogeneity reduce
Tc, there are “framework” patterns that increase Tc by up to a

theoretical maximum of 76%. For comparison, we also study
inhomogeneous Ising models; the results support our find-
ings for XY models.

The XY model has the following classical Hamiltonian:

HXY��� = − �
�ij�

Jij cos��i − � j� , �1�

where i , j are site labels, Jij are nearest-neighbor couplings
�representing the local phase-coherence energy scale�, and �i
are real-valued phase �angle� variables. We consider here
only two-dimensional models. We define a “homogeneous”
model as one where all the couplings are equal, Jij =J0. In-
homogeneity is represented by spatial variations in Jij. For a
meaningful study, it is necessary to impose some kind of
constraint on the inhomogeneity; in contrast to Ref. 1, which
fixes the average attractive Hubbard potential U�r�, we
choose to fix the average coupling, Jij =J0. Our constraint
eliminates the aforementioned increase of Tc due to inhomo-
geneous pairing strengths, allowing us to isolate the effects
of inhomogeneous phase stiffness. It has the further advan-
tage of preserving the values of the helicity modulus ��T
=0� and energy U�T=0� at zero temperature �for the patterns
in Fig. 1�.

We are interested in optimizing the transition temperature.
To study this, we focus on the behavior of the helicity modu-
lus ��T�. The helicity modulus measures the change in the
free energy caused by a small change in the phase angle,7

and it is related to the areal superfluid density by �
=�2�s / �4m*�. We calculate this quantity via Monte Carlo
simulations using

� =
1

2V	�
�ij�

Jij cos��i − � j� − �
�
�ij�

Jij sin��i − � j��2� .

�2�

We use the Wolff cluster algorithm,8 which is the fastest
serial algorithm for our purposes. The � variables are stored
and manipulated as two-vectors to avoid trigonometric func-
tion calls.
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In order to obtain reliable estimates of Tc, we have per-
formed finite-size scaling �FSS� on ��L ,T� in the following
manner. The BKT transition can be described by a two-
parameter scaling flow7,9–11 for the dimensionless helicity
modulus u=� /T and the “vortex fugacity” y,

du

dl
= − 4	3u2y2,

dy

dl
= �2 − 	u�y , �3�

where l=ln L is the length scale. This pair of differential
equations can be solved numerically, given initial values
u�l0�=u0 and y�l0�=y0 �where l0 is some reference length
scale�. For each temperature T, we choose u0 and y0 so as to
obtain a good fit of u�l� to the Monte Carlo data for the
available system sizes, 4
L
1024 �see Fig. 2�a��. We then
integrate the differential equations all the way to l=�. This
gives u��� and hence the helicity modulus in the infinite-size
limit ��T ,L=��, shown in Fig. 2�b�.22

Our most important result is that by redistributing the
bond strengths of an XY model in certain inhomogeneous
patterns, it is possible to increase Tc. As a concrete example
of how this comes about, we show how the shape of the
helicity modulus curve vs temperature is changed by intro-
ducing inhomogeneity. In Fig. 3, we show our simulations of
��T�, extrapolated to infinite system size L→�, for a 2D
inhomogeneity of the type shown in Fig. 1�b� using �=4a,
where a is the underlying lattice constant. In curves �ii� and
�iii� in Fig. 3, the coupling constant Jij has been made stron-
ger �Js� on the thick lines in Fig. 1�b� and weaker �Jw� on the
thin lines. We compare these to the homogeneous case �curve

�i�� with J set equal to the spatial average of Jw and Js, J
=Javg�Js+ ��−1�Jw� /�. Thus for all curves shown in Fig.
3, the zero-temperature helicity modulus ��T=0� and the
zero-temperature free energy are the same.

In the homogeneous case, it is known that Tc=0.8929J
�Refs. 7 and 12� and that the low-temperature slope of the
helicity modulus ���0�=1/4.13,14 Curve �ii� in Fig. 3 shows
the helicity modulus for Js=3.4 and Jw=0.2. In this case, the
transition temperature is enhanced by 8% above the homo-
geneous case. For the case of extreme inhomogeneity with

FIG. 1. In this Brief Report, we study the above inhomogeneity
patterns, where certain bonds are made stronger �Js� and others
weaker �Jw� such that the total coupling is preserved. �a� ID modu-
lation; �b� 2D modulation.

FIG. 2. �Color online� Finite-size scaling. The crosses are Monte
Carlo results for the helicity modulus ��L ,T� of a 44-modulated
XY model with Jw=0 and Js=4Javg, for T=0.9,1.0, . . . ,1.5 in units
of Javg and L=4,8 , . . . ,1024. �a� Dimensionless helicity modulus
u=� /T as a function of system size. The curves are solutions of the
scaling equations �Eq. 3� chosen to fit the data �crosses�. The dashed
line is � /T= 2

	 . �b� Helicity modulus as a function of temperature.
The black curve is ��L=� ,T�, obtained by FSS. The dashed line is
�= 2

	T.

FIG. 3. �Color online� ��T ,L=�� for 2D XY models. �i� Homo-
geneous 2D XY model. �ii� 44 modulation with Js=3.4 and Jw

=0.2. �iii� 44 modulation with Js=4 and Jw=0. The dashed line is
�= 2

	T. The arrow indicates the theoretical upper bound Tmax
c

= 	

2 Javg.
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Js=4 and Jw=0 �curve �iii��, the transition temperature is
25% higher than in the homogeneous case. The shape of
curve �ii� demonstrates the separation of energy scales that
happens with inhomogeneity. Notice that at the very lowest
temperatures, curve �ii� is dominated by the long-wavelength
average of the coupling constants, and the low-temperature
linear slope of the helicity modulus is identical to that of the
homogeneous case. As temperature is raised, the slope in-
creases in magnitude as the weak plaquettes become disor-
dered. Then, at a higher temperature, the slope approaches
that of curve �iii�, indicating that at higher temperatures the
helicity modulus is dominated by Js. It is this shallower high-
temperature slope which causes the helicity modulus to over-
shoot the homogenous Tc and leads to an inhomogeneity-
induced enhancement of the transition temperature.

For 2D patterns like those in Fig. 1�b�, the enhancement
of the transition temperature increases with �, as shown by
curve �ii� in Fig. 4�b�. However, the enhancement is con-
strained by the zero-temperature helicity modulus. Even in
the presence of inhomogeneity, in two-dimensions, the sys-
tem remains in the BKT universality class and the helicity
modulus has a universal jump at the transition such that
��Tc�=0.6365Tc. Since thermal fluctuations introduce disor-
der, ��Tc����T=0�, so that Tc /��0�
1.57 or, equiva-
lently, Tc /Tc0
1.76. This theoretical upper bound on Tc is
illustrated in Fig. 3. That is, although the zero-temperature
properties of the system may be used as a predictor of the
transition temperature, Tc=A��T=0�, the constant A is non-
universal. In fact, A=Tc /��0� may be useful for character-
izing the degree of inhomogeneity: it increases from 0.89 for
the homogeneous XY model up to a theoretical maximum of

1.57. For a 2D system, a large measured value of this ratio
may indicate substantial inhomogeneity. �An increase in this
ratio may also indicate higher dimensionality.13�

We have also considered one-dimensional �1D� modula-
tions, like those in Fig. 1�a�. Since this type of inhomogene-
ity drives the system towards more 1D physics where a phase
transition is forbidden by the Mermin-Wagner theorem, the
transition temperature decreases, as shown in Fig. 4�a�.
Therefore, the enhancement of Tc is not additive—the effect
of a 2D modulation is not double that of a 1D modulation.
Reference 1 found that for an attractive Hubbard model, 1D
modulation of the potential U produces simultaneous 1D
modulation of the pairing energy scale and phase stiffness,
which have opposing tendencies to raise and to lower Tc.
According to our results, 2D modulations of the pairing and
phase stiffness should cooperate to raise Tc.

Figure 4 also shows the effect of inhomogeneity in the
Ising model for comparison. Inhomogeneous Ising models
may be described by the Hamiltonian

HIsing��� = − �
�ij�

Jij�i� j, �i = ± 1. �4�

As with the XY model, we restrict ourselves to two dimen-
sions. For the purpose of studying different length scales of
inhomogeneity, we focus on an extreme type of inhomoge-
neity with Jw=0 and Js=�Javg. Such patterns correspond to
“decorated” lattices. By integrating out all doubly coordi-
nated spins �that is, by applying the so-called decorated-
iteration transformation, Jeff= tanh−1�tanh J1 tanh J2��, one
can reduce a decorated lattice to a primitive lattice and thus
obtain an exact expression for its Tc �Eq. �5��.23 �Unfortu-
nately, the decoration-iteration transformation for XY models
involves an infinite set of Fourier components of the
potential11 and it does not lead to exact results for Tc.�

In Fig. 4, we show the effect of extreme inhomogeneity
�i.e., with Jw=0� on the transition temperatures in Ising and
XY models. We use the maximum value of Js=�Javg, because
for a given wavelength �, this gives the largest enhancement
of Tc while conserving the average coupling Javg. While we
are interested primarily in superconductors with small super-
fluid density, which can be captured with an XY model, we
also show results for the Ising model for which results can be
obtained analytically as described above. Figure 4�a� shows
the effect of a purely 1D modulation, as a function of dis-
tance � between strong bonds Js, chosen so as to preserve the
zero-temperature, long-wavelength properties of the system.
The pattern of coupling constants is shown in Fig. 1�a�. In
the Ising case, the transition temperature is unchanged by
this procedure. In the XY case, the transition temperature
decreases monotonically with �.

The effect of a 2D modulation is shown in Fig. 4�b�.
Again, parameters are chosen so as to preserve the zero-
temperature properties of the system. Figure 1�b� shows the
pattern of coupling constants. Here, the transition tempera-
ture in the Ising case increases as

Tc =
2�Javg

sinh−1
csch� 1

�
sinh−1 1�� . �5�

FIG. 4. �Color online� Critical temperatures Tc of the lattices
depicted in Figs. 1�a� and 1�b� as a function of the wavelength of
the inhomogeneity.
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One of the occurrences of lambda in this equation is due to
taking � bonds in parallel, to form “bundles,” and the other
occurrence is due to taking � bundles in series. For XY mod-
els, the transition temperature also increases monotonically
with modulation length �. In this case, there is an upper
bound, set by the zero-temperature properties of the system,
as shown in Fig. 3. That is, the maximum enhancement of Tc
possible with this type of inhomogeneity in an XY model is
76%.

Numerous other physical systems, besides superconduct-
ors with low superfluid density, can be described by XY mod-
els. Thus, our work may have applications to Josephson
junction arrays, superfluidity in nanostructured porous me-
dia, and magnetism in inhomogeneous systems. The question
of the effects of inhomogeneity is even related to materials
engineering and operations research. For example, composite
materials often have superior mechanical properties com-
pared to pure ones; efficient design of traffic and communi-
cations networks often uses links of differing capacities or
reliabilities.

In conclusion, we have shown that certain types of inho-
mogeneity can increase the transition temperature of Ising
and XY models. Specifically, two-dimensional modulations
of the coupling constants that preserve the spatial average
coupling increase the transition temperature over that of the
homogeneous case. One-dimensional modulations depress
the transition in XY models and leave the transition tempera-
ture unchanged in Ising models. Our results for 2D XY mod-
els may indicate that certain types of inhomogeneity can re-
sult in an enhancement of superconductivity in systems with
low superfluid density.
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