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Evidence of Electron Fractionalization from Photoemission Spectra
in the High Temperature Superconductors
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In the normal state of the high temperature superconductors Bi2Sr2CaCu2O81d and La22xSrxCuO4, and
in the related “stripe ordered” material, La1.25Nd0.6Sr0.15CuO4, there is sharp structure in the measured
single hole spectral function, A,� �k, v�, considered as a function of �k at fixed small binding energy v.
At the same time, as a function of v at fixed �k on much of the putative Fermi surface, any structure in
A,� �k, v�, other than the Fermi cutoff, is very broad. This is characteristic of the situation in which there
are no stable excitations with the quantum numbers of the electron, as is the case in the one-dimensional
electron gas.
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In a Fermi liquid, the elementary excitations have the
quantum numbers of an electron, so the one particle spec-
tral function, A� �k, v�, is peaked at v � e��k� � �yF� �kF� ?

� �k 2 �kF�, where e� �k� is the quasiparticle dispersion rela-
tion. The single hole piece, A,� �k, v�, can be measured us-
ing angle-resolved photoemission spectroscopy (ARPES).
The lifetime of the quasiparticle, t� �k�, can be determined
from the width of the peak in the “energy distribution
curve” (EDC) defined by considering A,� �k, v� at fixed
�k as a function of v:

1�t � Dv . (1)

A check on the consistency of this picture can be ob-
tained by studying the “momentum distribution curve”
(MDC), i.e., by studying the width Dk of the peak in
A,� �k, v� at fixed binding energy, v. As long as the quasi-
particle excitation is well defined, (i.e., the decay rate is
small compared to the binding energy), these two widths
are related by

Dv � yFDk , (2)

where yF is the renormalized Fermi velocity which is di-
rectly measured. This well-established Fermi-liquid the-
oretic picture as applied to normal metals was recently
observed in ARPES measurements of surface states on
molybdenum by Valla et al. [1].

The ways in which strong correlation effects can lead
to the breakdown of Fermi-liquid theory in more than one
dimension are not well understood. However, non-Fermi-
liquid behavior is generic in the theory of the one-
dimensional electron gas (1DEG), where there are no
elementary excitations with the quantum numbers of the
hole [2]. Because of the celebrated separation of charge
and spin, a hole (or an electron) is always unstable to de-
cay into two or more elementary excitations, of which one
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or more carries its spin and one or more carries its charge.
Consequently, A,�k, v� does not have a pole contribution,
but rather consists of a multiparticle continuum. If both
the spin and charge excitations are gapless, elementary
kinematics implies that, at T � 0, A,�k, v� is nonzero
only for negative frequencies such that

jvj $ min�yc, ys� jkj , (3)

as shown in Fig. 1. [We define A,�k, v� as the Fourier
transform of the hole piece of the single particle Green
function with respect to kx 2 vt and measure the wave
vector and frequency relative to kF and EF , respectively,
so 2v is the electron binding energy.]

Clearly, at T � 0 and constant energy v there will
be nonzero spectral weight in a region of k of width
Dk � 2jvj�min�yc, ys�, and a peak in the MDC with a
full width at half maximum equal to some fraction of this.
At finite temperature, one effectively averages over v in a

FIG. 1. Kinematic constraints: A,�k, v� for the 1DEG is
nonzero at T � 0 only in the shaded region of the �k, v� plane.
In the spin rotationally invariant case, Ks � 1, A,�k, v� � 0
in the lightly shaded region as well. If, in addition, Kc � 1,
A,�k, v� � 0 outside the darkest region. Here yc . ys.
© 2001 The American Physical Society
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range T , giving rise to a Dk proportional to the greater of
T and jvj. By contrast, at k � 0, the shape of the EDC is
not given by the kinematics at all, but is rather determined
by the details of the matrix elements linking the one hole
state to the various multiparticle hole states which form
the continuum. In this case, the spectrum has a nonuniver-
sal power-law behavior with exponents determined by the
interactions in the 1DEG.

Figures 2 and 3 show finite temperature spectral func-
tions of the 1DEG for various interaction strengths (i.e.,
for various values of the charge Luttinger exponent Kc).
It is a direct, general, and dramatic consequence of elec-
tron fractionalization that the MDC is much more highly
constrained by kinematics than the EDC, which can of-
ten be very broad compared to the MDC. When such a
dichotomy can be established experimentally, we believe
it represents strong evidence of electron fractionalization.
This dichotomy has been observed in the measured spectral
functions of La1.25Nd0.6Sr0.15CuO4 (LNSCO) [3,4] shown
in Fig. 3, La22xSrxCuO4 (LSCO) [4–6], and slightly un-
derdoped and even optimally doped Bi2Sr2CaCu2O81d

(BSCCO) [7,8] in the normal state (at T . Tc). (For in-
stance, see Fig. 2 of Ref. [7].)

We would like to emphasize that spin-charge separation
is sufficient but not necessary for fractionalization. The
spinless 1DEG is an example where the electron decays
into a multitude of left and right moving density waves.
Here, too, the EDCs lack quasiparticle peaks and exhibit
power-law tails. Similar signatures are found when quasi-
particles are strongly scattered by �2 1 1�- or �3 1 1�-
dimensional quantum critical fluctuations [9] and in a
“marginal Fermi liquid” [10]. However, in these last two

FIG. 2. MDCs for v � 0 (left) and EDCs for k � 0 (right)
for the spin rotationally invariant 1DEG with yc�ys � 3, and
(a) gc � 0.1, (b) gc � 0.3, and (c) gc � 0.5.
cases the spectral weight is highly peaked at v � yFk
and Eq. (2) holds to good approximation; to logarithmic
accuracy for the marginal Fermi liquid.

Because the gapless Tomonaga-Luttinger liquid is a
quantum critical system, its response functions have a
scaling form. Recently we obtained [11] explicit analytic
expressions for these scaling functions under various
conditions. In the spin rotationally invariant case, the
result for A,�k̃, ṽ� at finite temperature in terms of the
scaled variables ṽ � v�2pT and k̃ � ysk�2pT is

A,�k̃, ṽ� ~
Z `

2`
dqhgc11�2�ṽ 2 k̃ 1 �1 1 r�q�

3 hgc �ṽ 2 k̃ 2 �1 2 r�q�h1�2�2k̃ 2 2rq� ,

(4)

where r � ys�yc is the ratio of the spin and charge veloci-
ties and h is related to the beta function, B�x, y�,

hg�k� � Re

∑
�2i�gB

µ
g 2 ik

2
, 1 2 g

∂∏
. (5)

Here, we have introduced the critical exponents

ga � 1
8 �Ka 1 K21

a 2 2� , (6)

which are expressed in terms of the Luttinger parameters
Ka with a � c, s for charge and spin, respectively. For a
spin rotationally invariant system, Ks approaches 1 at the
fixed point. Therefore we have set Ks � 1.

The kinematics discussed following Eq. (3) be-
comes evident once the T ! 0 limit of Eq. (4)
is considered, by using the asymptotic behavior
hg�jkj ! `� ~ �2k�g21Q�2k�. An interesting sub-
tlety occurs in the spin rotationally invariant case, which
results in a more stringent constraint on the extent of the
multiparticle continuum than is implied by pure kinemat-
ics. In this case, at the fixed point, the spin correlators do
not mix left and right moving pieces. As a consequence,
A,�T � 0� vanishes if ys , yc and k . 0 when v

is in the range ysk # jvj # yck, even if the kinematic
constraints in Eq. (3) are satisfied (see Fig. 1).

If ys , yc and both Ks � 1 and Kc � 1, so that the
charge piece also does not mix left and right movers,
A,�T � 0� vanishes unless k , 0 and ysjkj # jvj #

ycjkj, as shown in Fig. 1. There is, of course, no special
reason why Kc should be precisely equal to 1, but if the
interactions are only moderately strong (i.e., gc & 0.2),
most of the spectral weight is still concentrated in this
region. In such a circumstance, even though the electron
fractionalizes, as long as yc�ys is not too large, Dv �
�yc 2 ys� jkj and Dk � ��yc 2 ys��ycys� jvj at T � 0
and similar expressions with T substituting for k�yF and
v, respectively, at elevated temperatures. Thus, the spec-
tral function resembles that of a marginal Fermi liquid.

In Fig. 2 we plot EDCs (for k � 0) and MDCs (for
v � 0) generated by using Eq. (4) for ys�yc � r � 1�3
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and various values of gc. The results depend only weakly
on r . However, as a function of gc, the EDCs change
much more dramatically than do the MDCs. In particular
it is possible to eliminate any peak structure in the EDCs
without broadening the MDCs substantially.

It is also possible to obtain expressions for the spec-
tral function of the spin gapped Luther-Emery liquid with
Ks � 1�2 [11]. While different in detail, the results in this
case are grossly similar to those in the gapless case, aside
from the fact that the Fermi edge is pushed back from the
Fermi energy by the magnitude of the spin gap.

The spectra in Fig. 2 are very reminiscent of the ARPES
spectra seen in the cuprates. While the details vary from
material to material, the MDCs are always fairly sharp,
while the EDCs broaden dramatically with underdoping,
especially in the �p, 0� region of the Brillouin zone (BZ).
We take this as evidence of electron fractionalization in
the normal state of these materials.

There is experimental evidence that the physics of the
1DEG is also relevant to aspects of the electronic spec-
trum of the cuprates, especially at finite frequencies where
local considerations are important. La1.42xNd0.6SrxCuO4
(x � 0.1, 0.12, 0.15) is a “stripe ordered” nonsupercon-
ducting relative of the high temperature superconductors
[12]. The low energy ARPES spectral weight is largely
confined within patches in the “antinodal” region of the
BZ with kx � 6p�4 and ky within 25% of p (and sym-
metry related regions of the BZ) [3], consistent with the
idea that the spectrum is dominated by the 1DEG that
lives along nearly quarter-filled stripes. Static stripe or-
der has been detected in La22xSrxCuO4 with x , 0.13,
but not for x . 0.13, or in BSCCO or YBa2Cu3O72d with
Tc � 90 K. However, in both LSCO with x . 0.13 and
underdoped YBa2Cu3O72d, evidence of slowly fluctuat-
ing spin order has been detected with inelastic neutron
scattering [13,14]. Evidence for fluctuating charge stripe
order has also been reported [14].

The idea that the ARPES spectrum in the anti-
nodal regions of BSCCO is dominated by quasi-
one–dimensional physics has been discussed in a previous
paper [15]. Flat EDCs in the antinodal regions have
been observed in stripe ordered LNSCO [3,4] and LSCO
[5,6]. Similarly in BSCCO, a dichotomy between a
sharp peak in the MDC and the absence of a peak in
the corresponding EDC can be clearly seen in Fig. 3
of Ref. [7]. This dichotomy is most pronounced in the
underdoped materials. The structures in the EDCs tend to
sharpen with overdoping. Moreover, the spectral function
shown in Fig. 1d of Ref. [7] is consistent with our Fig. 1.

Electron fractionalization in the normal state of BSCCO
near �p, 0� was inferred previously by us [15] based on
an independent, although somewhat less direct, analysis.
It was observed that a sharp quasi-particle-like feature
emerges in the superconducting state with Dv � Dk�yF ,
and a weight which is strongly temperature and doping
dependent [16–18]. Empirically, it is observed that the
weight is roughly proportional to the superfluid density
4364
[18]. We have shown [15] that this behavior can be under-
stood as arising from a dimensional crossover from a one
dimensional (spin-charge separated) spectrum above Tc to
a two-dimensional spectrum, consistent with the existence
of an electronlike quasiparticle, below Tc.

It was recently discovered [4] that there is a second
component to the spectrum in LNSCO with small spectral
weight in the “nodal” region, concentrated along straight
Fermi segments perpendicular to the �0, 0� to �p , p� ray,
as indicated in Fig. 3. Thus, the distribution of low energy
spectral weight in the BZ looks qualitatively similar to that
found in LSCO and BSCCO although in the latter the nodal
Fermi segments are considerably more curved. The ori-
gin of these nodal segments is not clear. Possible sources
for them may include a fluctuating stripe array [19] and
bond-centered stripes [20]. It is also presently unknown
whether such models lead to a fractionalized spectrum in
the nodal region, although for sufficiently flat Fermi seg-
ments and strong interactions this may be the case [21]. In
the following we will take a heuristic approach and also
compare the nodal data with the 1DEG predictions.

FIG. 3 (color). Spectral functions of La1.25Nd0.6Sr0.15CuO4
(experiment) and a spin rotationally invariant 1DEG (theory)
with gc � 0.5, ys � 0.7 eV Å and yc � 3.5 eV Å. In both
cases, T � 15 K: (a) Experimental contour plot of A,� �k, v�.
The data was collected along the line in the second BZ shown
in red in the inset. The black diagonal lines indicate the
position of the low energy Fermi segments; (b) contour plot for
the 1DEG; (c) experimental MDC at v � 0; (d) experimental
EDC at �k � �1.6p, 20.4p�.
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In Fig. 3 we show the one particle spectral function ob-
tained in recent experiments [4] on LNSCO along a ray
perpendicular to the Fermi surface at the “nodal point”
�kF � �1.6p , 20.4p� (a similar but weaker signal, due to
matrix element effects, is observed along an equivalent
cut in the first BZ). The measured spectra look simi-
lar to those of the spin rotationally invariant 1DEG with
gc � 0.5 (Figs. 2c and 3d) and spin and charge veloci-
ties ys � 0.7 eV Å and yc � 3.5 eV Å. The value of
gc � 0.5 corresponds to very strong interactions. (In com-
paring theory with experiment, we confine ourselves to the
portion of the spectrum with binding energies less than the
antiferromagnetic exchange energy, J � 0.1 eV.)

ARPES measurements along the nodal direction of un-
derdoped, optimally doped, and overdoped LSCO [4–6]
reveal behavior of A,� �k, v� similar to that displayed in
Fig. 3. Normal state data from the nodal direction in
BSCCO are shown in Refs. [7,22–24]. Here there is [23]
a well-formed peak in the MDC, and a comparably sharp
peak in the EDC with Dk � Dv�yF . If we compare the
spectral function with that of a 1DEG, we find that they
look fairly similar provided we assume that gc � 0.2. Of
course, in this case it is also possible to imagine more
quasi-particle-like interpretations of the data.

One such interpretation [10] in terms of the marginal
Fermi-liquid phenomenology is based on the recent obser-
vation [7] that, over most of the Fermi surface of BSCCO,
the width of the MDC approximately satisfies the relation
Dk � �Dk�0 1 �Dk�1T for a range of temperatures above
Tc, where �Dk�0 depends on position along the Fermi sur-
face but �Dk�1 does not. However, in the same study it was
found that, except for an interval of Fermi surface near the
nodal direction (comprising, perhaps, 30% of it), the EDC
has little or no peak. Thus, taken at face value, the mea-
sured widths of the EDCs outside this interval are incon-
sistent with a marginal Fermi-liquid form of the spectral
function. We note that it has been stressed for many years
by Anderson [25] and Laughlin [26] that the breadth of the
measured EDCs provides strong evidence of electron frac-
tionalization in the high temperature superconductors; the
present analysis is similar in outline, although it differs in
many particulars.

While some aspects of the data admit to mundane expla-
nations, such as surface disorder, resolution effects where
the dispersion is steep, and ambiguities due to any back-
ground signal, the data set as a whole is more constraining.
For example, while disorder could explain the breadth of
the EDC near �p, 0�, this explanation is in apparent conflict
with the sharpness of the MDC and, at least in BSCCO,
with the emergence of a sharp peak in the EDC below
Tc. Moreover, the structure in the EDC gets sharper with
overdoping, although the dispersion does not change sub-
stantially, and, at least in LSCO, the density of impurities
increases.
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