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Doped antiferromagnets in high dimension
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The ground-state properties of thet-J model on ad-dimensional hypercubic lattice are examined in the limit
of larged. It is found that the undoped system is an ordered antiferromagnet, and that the doped system phase
separates into a hole-free antiferromagnetic phase and a hole-rich phase. The latter is electron free ifJ.4t and
is weakly metallic~and typically superconducting! if J,4t. The resulting phase diagram is qualitatively
similar to the one previously derived ford52 by a combination of analytic and numerical methods. Domain-
wall ~or stripe! phases form in the presence of weak Coulomb interactions, with periodicity determined by the
hole concentration and the relative strength of the exchange and Coulomb interactions. These phases reflect the
properties of the hole-rich phase in the absence of Coulomb interactions, and, depending on the value ofJ/t,
may be either insulating or metallic~i.e., an ‘‘electron smectic’’!. @S0163-1829~98!00924-2#
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In this paper, the zero-temperature properties of thet-J
model of a doped antiferromagnet on ad-dimensional hyper-
cubic lattice are evaluated using a systematic expansio
powers of 1/d. For each property of interest the leading b
havior in the large-d limit is computed, and in some case
corrections up to order 1/d5 are obtained. These results a
obtained by breaking the full Hamiltonian into an unpe
turbed pieceH0 and a perturbationH1 and then reorganizing
conventional perturbation theory in powers ofH1 into a 1/d
expansion. Of course the partition of the Hamiltonian may
chosen for calculational convenience, since it does not af
the results. The convergence of this expansion will not
addressed.

Our procedure differs from the extensive recent work
the related problem of the Hubbard and Falicov-Kimb
models in large dimension1 in the way the large dimensio
limit is taken. First of all, we do not assume that the ratioJ/t
of the exchange integralJ and the hopping amplitudet is
parametrically small asd→`. The previous studies assume
that t is proportional to 1/Ad so that, whenJ is expressed in
terms of the on-site interactionU, it follows that J/t
54t/U;1/Ad. ~The phase diagram will be studied for par
metrically small values ofJ/t in Sec. VIII, but our results are
less complete in this case, because of the difficulty of c
trolling perturbation theory in this limit.! Secondly, the hy-
percubic lattice is bipartite, i.e., it can be broken into tw
sublattices, which we label ‘‘black’’ and ‘‘red,’’ such tha
the Hamiltonian has interactions only between sites on
ferent sublattices. This favors the classical Ne´el state, which
has a uniaxial magnetization with opposite sign on the t
sublattices. By contrast, earlier studies, which were prima
concerned with the Mott transition and possible non-Fer
liquid states of the Hubbard model, assumed a nonbipa
lattice which frustrates the Ne´el state. For both reasons, th
previous work does not shed much light on the behavior
doped antiferromagnets. A notable exception is the work
570163-1829/98/57~23!/14704~18!/$15.00
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van Dongen2 on the small-U limit of the Hubbard model on
a hypercubic lattice which found, as we do, that the wea
doped antiferromagnetic phase is unstable to phase se
tion, even if the parameters are scaled asJeff/t54t/U
;1/Ad.

Throughout this paper, units are chosen such that the
tice constant\ and Boltzmann’s constant are all equal
one.

I. SUMMARY OF RESULTS

A. Results in large dimension

Our principal result is the global zero-temperature ph
diagram as a function ofJ/t and hole concentrationx, in the
limit of large d, as shown in Fig. 1. It is immediately clea
that in most of the phase diagram, the undoped~ordered!
antiferromagnetic phase coexists with a hole-rich phase.
J/t.4, the hole-rich phase is electron free; otherwise it co
tains an exponentially small but nonvanishing concentrat
of electrons. In the intermediate-coupling regime, 2,J/t
,4, the residual attraction (J) between electrons is grea
enough to overcome the hard-core repulsion, and leads
BCS instability of the dilute metal, producing ans-wave su-
perconducting state at exponentially low-energy scales.
smaller values ofJ/t, the net interaction between electrons
repulsive. This implies that the system either remains me
lic down to zero temperature or exhibits higher-angul
momentum pairing3 via the Kohn-Luttinger mechanism.4

A peculiarity of the phase diagram in Fig. 1 is that th
boundary of the two-phase region intersects theJ/t50 axis
at a nonzero value ofx. This is not likely to be correct in any
finite dimension. For smallx and large but finite dimension
we expect that in the limitJ/t→0, the ground state is a
ferromagnetic Fermi liquid, and hence the model does
phase separate. In Sec. VIII, we discuss the behavior of
model forJ/t parametrically small,J/t;1/Ad. Here the 1/d
14 704 © 1998 The American Physical Society
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57 14 705DOPED ANTIFERROMAGNETS IN HIGH DIMENSION
expansion is slightly more difficult to control, so our resul
summarized in Fig. 2, are incomplete. The resulting conj
tural phase diagram for large but finited embodies all the
insights gained from studying thed→` limit, but corrects
the unphysical features of the phase diagram in Fig. 1.

We have also studied the behavior of one or two dop
holes and the character of charged domain walls in the a
ferromagnet. It will be seen that the latter are stabilized b
long-range Coulomb interaction. These studies bring ou
important characteristic of our large-d expansion. Wheneve

FIG. 1. Phase diagram of thet-J model in the limitd→`: Here
x is the hole concentration (12x is the electron concentration!. The
phase boundary is given by Eq.~53!, artificially setting d52.
‘‘Two-phase’’ labels the two-phase region, where a uniform den
phase is thermodynamically unstable, ‘‘SC’’ labels a region
s-wave superconductivity, and ‘‘M’’ labels a region of metall
behavior with repulsive interactions, which presumably has an
tralow temperature superconducting instability due to the Ko
Luttinger effect~Ref. 4!.

FIG. 2. Conjectured phase diagram of thet-J model for large
but finite d: This figure should be viewed as a blowup of the sm
J/t portion of Fig. 1. The horizontal line represents the smallJ/t
extension of the phase boundary in Fig. 1; in fact, in larged, this
line would be exponentially close to the top of the figure, but
have drawn it, as in Fig. 1, at a position obtained by settingd52 in
the larged expression. The boundary of the fully polarized ferr
magnetic metallic phase~labeled ‘‘F’’! is drawn in accord with the
larged expression in Eq.~75!. There might be other, lower-energ
phases,~e.g., high-density stripe phases! that could occur below
these two phase boundaries, in the region marked ‘‘two-phas
especially close to the point of intersection.
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a hole moves in the antiferromagnetic background, it m
break a number of bonds of orderd at each hop. Conse
quently, for such processes, the physics is exchange dom
nated for larged and it amounts to an expansion in powers
t/J. This is true of the motion of one or two holes and
domain-wall fluctuations in which holes hop into the env
ronment. However the questions of phase separat
domain-wall phase equilibrium, and superconductivity at lo
electron concentration are not subject to this limitation.

The ensuing discussion will be organized by order of
creasing hole concentration. To leading order in 1/d the
states of minimum energy of a single hole lie precisely
the magnetic Brillouin zone which also is the Fermi surfa
of the noninteracting system with a half-filled band. T
massive degeneracy of these low-energy hole states is l
by terms ofO(1/d4), and it is found that the absolute min
mum occurs atkW5(p/2)^1,1,1, . . . & together with points re-
lated by the point-group symmetry. Moreover, as dedu
previously by Trugman5 in studies of two holes in a two
dimensional antiferromagnet, we find that propagation
pairs of holes is no less frustrated than is the propagatio
a single hole, because of a subtle effect of Fermi statist
There is, however, an effective attraction;1/d between two
holes due to the fact that two nearest-neighbor holes br
one less antiferromagnetic bond than two far-separa
holes; this attraction always leads to a two-hole bound st

An interesting metastable state is a charged magnetic
main wall ~i.e., ad21 dimensional hypersurface with finit
hole concentration and suppressed magnetic order!. We have
found that the most stable domain wall has an electron d
sity which is, to leading order in 1/d, equal to that of the
hole-rich phase which can exist in equilibrium with the a
tiferromagnet. Thus domain walls can be viewed as a form
local phase separation. Also the domain-wall configurat
with the lowest surface tension~i.e., energy per unit hyper
area of wall! is the ‘‘vertical’’ site-centeredp ~antiphase!
discommensuration in the antiferromagnetic order; i.e., i
parallel to a single nearest-neighbor vector and odd un
reflection through a site-centered vertical hyperplane.

We have considered the effect of weak, long-range C
lomb interactions as a perturbation. While this study is n
exhaustive, we conclude that, for a substantial range of
rameters, the ground state consists of a periodically orde
array of optimal domain walls of the sort described abo
especially whenx is small but not too small. In this range o
x, the ground state is insulating forJ/t.4, and metallic for
J/t,4. The latter phase is an ‘‘electron-smectic’’6 which
exhibits crystalline order in one direction and liquidlike b
havior in the transverse (d21) directions. The liquid fea-
tures are associated primarily with the motion of electro
along the domain wall, and they may be metallic or co
densed into a superconducting state.

We have argued previously that the competition betwe
a local tendency to phase separation in a doped antiferrom
net and the long-range Coulomb repulsion between ho
produces a large variety of intermediate scale structures
cluding arrays of domain walls, which are significant fe
tures of doped antiferromagnets that we have called ‘‘fr
trated phase separation.’’7,8 However, these phenomena ha
not previously been derived from a microscopicmagnetic
model.9 It is particularly striking that, in the appropriat
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14 706 57CARLSON, KIVELSON, NUSSINOV, AND EMERY
range of parameters, charge- and spin-density wave o
coexist with metallic, and even superconducting behavio

B. How large are d52 and d53?

Large d is, of course, only of academic interest; we a
interested in the physical dimensions,d51, 2, and 3. The
properties of the one-dimensional electron gas~1DEG! are
well understood10 by now, and exhibit behavior that is quit
dimension specific. Moreover, for most of the conceiva
ordered states, the lower critical dimension for long-ran
order at zero temperature is one, so the 1DEG is not likel
be well understood in terms of adiabatic continuity fro
large dimension. However, long-range order at zero temp
ture is quite robust in both two and three dimensions,
there is every reason to expect that a 1/d expansion will
capture the essential physics of many of the zero-tempera
thermodynamic states.

To test this conjecture, we would like to make both qua
tative and quantitative comparisons between the result
the larged theory and any available exact, or well-controlle

TABLE I. Comparison of the results of exact numerical stud
~Ref. 11! ~the row labeled ‘‘exact’’! on the two-dimensional spin
1/2 Heisenberg antiferromagnet with the perturbative results
powers of 1/d derived in the present paper.~We have been unable
to find corresponding ‘‘exact’’ three-dimensional results.! The di-
mension is indicated by the arguments of the computed quanti
The rows labeled ‘‘upper’’ and ‘‘lower’’ give the rigorous uppe
and lower bounds on the energies obtained in the text. The app
mate results are obtained by settingy[J' /Jz51, V50, and d
52 or 3 in the series expansion, evaluated to the stated order
energies are measured in units ofJ/d, and the magnetizationm is
quoted in units in whichgmB51, wheremB is the Bohr magneton

EAF(2) m(2) EAF(3) m(3) E22 leg(2)

d0 -0.5 0.5 -0.75 0.5 -0.25
d21 -0.625 0.4375 -0.875 0.4583 -0.5
d22 -0.6563 0.4023 -0.8958 0.4427 -0.5625
d23 -0.6631 -0.8989 -0.5664
d24 -0.6647 -0.8993 -0.5713

Exact -0.669 0.307 -0.5780~Ref. 12!
Upper -0.5 -0.75 -0.375
Lower -0.75 -1.0 -0.625
er
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numerical or analytic results in two and three dimensio
Table I gives a quantitative comparison between the 1/d ex-
pansion and well-established numerical results for the
doped system, i.e., for the spin-1/2 Heisenberg antiferrom
net. It can be seen that the ground-state energy can
obtained from the low-order expansion in powers of 1/d to
0.6% accuracy or better. By carrying the series to hig
order, and possibly doing a Pade´ analysis of the series, muc
improved accuracy for all physical quantities could be e
pected. In Sec. XI comparison will be made between num
cal results and the results of perturbation theory about
Ising limit ~Table II!.

Qualitative comparisons can be made with the phase
gram of the two-dimensionalt-J model which has been de
duced from combined analytic and numerical13,14 studies.
Figure 3, abstracted from the work of Hellberg an
Manousakis,14 shows the phase diagram deduced from n
merical studies of systems with up to 60 electrons. As
large d, there is no thermodynamically stable zer
temperature phase with dilute holes for anyJ/t. Indeed, aside
from the behavior of the boundary of the two-phase region
very smallJ/t, the phase diagrams in Figs. 1 and 3 are sim
lar. As suggested above, when the pathologies of the for
d→` limit are removed by taking into account the new pr
cesses that become important at parametetrically small
ues ofJ/t;d21/2, one obtains for large but finited the phase

in

s.

xi-

ll

FIG. 3. Zero-temperature phase diagram of the two-dimensio
t-J model, deduced from numerical studies of finite-size syste
with up to 60 electrons, as well as from various analytic resu
This figure is abstracted from Hellberg and Manousakis~Ref. 14!.
es. The
to
TABLE II. Comparison of the results of exact numerical studies~the row labeled ‘‘exact’’! on the
two-dimensional spin-1/2 Heisenberg antiferromagnet, with the perturbative results in powers ofy5J' /Jz

derived in the present paper. The dimension is indicated by the arguments of the computed quantiti
approximate results are obtained by settingy51, V50, andd52 or 3 in the series expansion, evaluated
the stated order. All energies are measured in units ofJ/d, and the magnetizationm is quoted in units in
which gmB51, wheremB is the Bohr magneton.

EAF(2) m(2) EAF(3) m(3) E22 leg(2)

y0 -0.5 0.5 -0.75 0.5 -0.375
y2 -0.6667 0.3889 -0.9 0.44 -0.5625
y4 -0.6657 0.3711 -0.8995 0.4360 -0.5729

Exact -0.669~Ref. 11! 0.307~Ref. 11! -0.5780~Ref. 12!
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57 14 707DOPED ANTIFERROMAGNETS IN HIGH DIMENSION
diagram shown in Fig. 2, which is topologically equivalent
Fig. 3. ~Of course, ind52, parametrically small values o
J/t are not all that small, so there is no reason to exp
quantitative agreement with the large-d results. The critical
value of J/t5Yc at which the phase-coexistence line de
ates fromx51 is14 Yc53.4367 ind52, and is rather well
approximated by the valueYc→4 as d→`. However, the
slope of the phase coexistence line ind52 is much steepe
than would be deduced from the large-d theory.! Similar
detailed information on the three-dimensionalt-J model is
not available at this time, although arguments presen
hitherto7,13 suggest that the phase diagram is qualitativ
similar to that ind52, consistent with the expectations fro
the 1/d expansion.

Our calculation of the spectrum of one hole in an antif
romagnet may be compared to the numerical calculation
Dagottoet al.15 on d52 systems with 16316 sites andJ/t
50.4. They found that the one-hole spectrum is well rep
sented by the two-dimensional version of the expression
Eq. ~38!, confirming the qualitative accuracy of the larged
expression. However the values of the parameters obta
to leading order in 1/d are quantitatively quite far from the
exact results, and this discrepancy is made worse by the
clusion of higher-order terms. This is not unexpected in vi
of the fact that larged drives the motion of a single hole int
the exchange-dominated limit. In particular, it is clear fro
Eq. ~37! that the large-d expansion gives a negative value f
the bandwidthW in d52, unlessJ.0.93t. Thus it is essen-
tial to compare the large-d expansion to numerical results
large J/t. Specifically, from Eq.~36! with y51, the band-
width for d52 is given bydW/t52.125t/J21.83(t/J)3. It
would be interesting to compare this result with numeri
calculations for largeJ/t extrapolated to the thermodynam
limit. Martinez and Horsch16 have found that an approximat
treatment of the motion of a single hole givesdW/t52t/J
for largeJ/t, which agrees very well with our large-d result.
Via a variational calculation, Boninsegni and Manousaki17

find dW/t50.5960.15 in the thermodynamic limit ford52
andJ/t55, while Eq.~36! gives 0.41.18

Finally, we can extrapolate to two dimensions the char
ter of the ordered arrays of charged domain walls at l
doping concentration and weak Coulomb interaction. D
main walls in two dimensions are one-dimensional~lines!
and such ordered arrays are known as ‘‘stripe phases.’’
rectly extrapolating the optimal large dimensional doma
wall structures tod52, we would expect the stripes to b
site-centered, vertical, antiphase domain walls in the anti
romagnetic order, and to be metallic~and possibly supercon
ducting! for J/t,Yc and insulating forJ/t.Yc . In particu-
lar, if we extrapolate the leading-order expression for
electron density in the hole-rich phase, Eq.~54!, to d52, and
then evaluate it fort@J, we find that such stripes shoul
have approximately 0.31 doped holes per site along
stripe, and are thus metallic. Transverse to the stripe di
tion, such a phase is a generalized charge and spin-de
wave state, in which the period of the charge density wav
half that of the spin-density wave.19 However, because of th
electronic motion along the stripe, this phase is actually
electron smectic.6 Unfortunately, there are no detailed micr
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scopic two-dimensional calculations to compare with the
results, so we compare them with experiments on do
antiferromagnets.20

C. Rigorous results

In addition to our perturbative results in powers of 1/d,
we have obtained rigorous upper and lower bounds on
ground-state energy of the undoped system. These bou
which are also quoted in Table I, are shown to converge
the limit d→`.

D. Relation to experimental results on doped antiferromagnets
in quasi-two and three dimensions

By now there are many examples of antiferromagne
insulators that can be chemically doped. One prominent
ture of these materials is the occurrence of high-tempera
superconductivity, a phenomenon for which the present
sults provide littledirect insight.21 However various spin-
and charge-ordered states, as well as ‘‘nearly ordered’’ fl
tuating versions of such structures, have been observe
these systems22,23by direct structural probes, especially ne
tron scattering. Two concrete, and well studied examp
of this are the quasi-two-dimensional perovskit
La22xSrxNiO4 and La1.62xNdxSrxCuO4, in both of which the
doped hole concentration is equal to the Sr concentratiox.
The undoped parent compounds~with x50) are antiferro-
magnetic insulators with spinS51 for the nickelates andS
51/2 for the cuprates. In both cases, upon doping, the s
tem forms24,23 a ‘‘stripe’’ phase, in which the doped hole
are concentrated in antiphase domain walls in the antife
magnetic order. At present it is not known whether the d
main walls are site or bond centered in general.~At higher
doping concentration in the nickelates, there is strong e
dence that both types of domain wall coexist due to inter
tions between the walls25.! However, there is a crucial dif-
ference between the domain walls in the two materials: In
nickelates, there is one doped hole per site along the dom
walls, and the doped system is, correspondingly, insulat
In the cuprate, the hole concentration along the domain w
is roughly one doped hole per two sites along the dom
wall, and the system is correspondingly metallic, and ev
superconducting, despite the presence of almost s
charge- and spin-density wave order.~This latter behavior is
very suggestive evidence of an electron-smectic phase.6! In
addition, the domain walls are diagonal in the nickelate24

and vertical in the cuprates.23,26

We feel that the occurrence of charged stripes in ligh
doped antiferromagnets, the fact that these stripes are
tiphase domain walls in the antiferromagnetic order, and t
they can be metallic or insulating, depending on the ratio
J/t, are physically robust features of the larged theory
which we expect to applymutatis mutandisin d52. How-
ever, the preference for vertical versus diagonal stripes,
site-centered versus bond-centered stripes is likely to dep
on microscopic details, even in large dimensions. Of m
profound importance is the fact that, while in large dime
sions the charged domain walls always crystallize at l
temperature into an ordered density wave, in low dime
sions, especially in two dimensions, there is the very r
possibility that the domain walls will be quantum
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disordered.27–29,6In such a melted state, which might be e
ther fully disordered~isotropic! or still retain orientational
order ~‘‘electron nematic’’!, the sort of charge and spin
ordered states that are characteristic of the larged theory
occur as local correlations in the fluctuation spectrum; a
croscopic electronic theory of such quantum disorde
states is not available at present.

II. THE MODEL

The model we consider is the straightforward generali
tion of the usualt-J model ~or t-J-V model30!:

H5
1

d (
^ i , j &

$JSW i•SW j1Vninj%2
t

d (
^ i , j &,s

$ci ,s
† cj ,s1H.c.%,

~1!

whereSW i5(s,s8ci ,s
† sW s,s8ci ,s8 is the spin of the electron on

site i , ni5(sci ,s
† ci ,s is the number of an electron on sitei ,

ci ,s
† creates an electron with az component of spin equal to

s561/2,sW are the Pauli matrices, there is a constraint of
double occupancy of any site,

ni50,1, ~2!

and ^ i , j & signifies nearest-neighbor sites on t
d-dimensional hypercubic lattice. In comparing results
different calculations, it is important to note that there
more than one definition of thet-J model. Most
commonly,13,14 ‘‘the t-J model’’ is defined as in Eq.~1! with
V52J/4, but without the prefactor of 1/d. Where it can be
done readily, we will quote results for arbitaryV, but where
this leads to complications, we will, for simplicity, analyz
only the canonical caseV52J/4. The additional factor of
1/d is included so that the ground-state energy density
mains finite in thed→` limit; thus, in making a comparison
with previous results on thed52 t-J model, all energies
computed here should be multiplied byd52.

III. THE UNDOPED ANTIFERROMAGNET

The undoped system has one electron per site so tha
electron hopping term (t) has no effect, and the system
manifestly insulating; the only remaining degrees of freed
are described by a spin-1/2 Heisenberg antiferromagnet
exchange couplingJ.

A. Rigorous bounds

It is possible to obtain upper and lower bounds on
ground-state energy of the spin-1/2 Heisenberg model wh
approach each other in the larged-limit. An upper bound is
obtained by calculating the variational energy of the ‘‘Ne´el’’
state, which has alternating up and down spins on alter
sites, and gives a ground-state energy per site ofENéel5
2J/41V.

A lower bound for the ground-state energy can
obtained31 as follows: We express the full Hamiltonian as
sum of pieces,

H5 (
j 5black

H j , ~3!
i-
d

-

o

f

-

he

th

e
h

te

where the sum is over all sites on the black sublattice andH j
is the exchange interactions between sitej and its nearest
neighbors~which are necessarily on the red sublattice!. The
HamiltoniansH j are readily diagonalized, but not simulta
neously since they do not commute with each other. No
theless, the sum of the ground-state energies ofH j gives the
lower boundElower52(11d21)J/41V for the ground-state
energy per site.

These results, combined, prove that the ground-state
ergy per siteEAF of the Heisenberg model approaches that
the classical Ne´el state in the limit of infinite dimension,

2~J/4!@111/d#<EAF2V<2~J/4!. ~4!

B. Perturbative expression for the ground-state energy
and sublattice magnetization

We now embark on the derivation of results in a syste
atic expansion in powers of 1/d. For this purpose, we will
consider the Heisenberg model as the isotropic limit o
Heisenberg-Ising model. To begin with, we use Rayleig
Schrödinger perturbation theory to evaluate the properties
interest in powers of theXY coupling, and then reorganiz
this perturbation theory in powers of 1/d. Thus, we take as
our unperturbed Hamiltonian the Ising piece of the inter
tion,

H05
1

d (
^ i , j &

@JzSi
zSj

z1Vninj #, ~5!

and treat theXY piece,

H15
J'

d (
^ i , j &

@Si
xSj

x1Si
ySj

y#, ~6!

as a perturbation.
The ground state ofH0 is the ~twofold degenerate! Néel

state.H1 has the effect of flipping pairs of spins, which b
cause of the large coordination in high dimensions me
that the intermediate states have energies that are pro
tional to d. We have evaluated the perturbative express
for the ground-state energy per siteEAF , and the ground-
state sublattice magnetizationm to fourth order in y
[J' /Jz , but it would be straightforward~using modern
methods of high-temperature series expansion! to extend
these results to higher order. The results are

EAF5V2
J

4F11
y2

~2d21!
2

y4~2d23!

4~2d21!3~4d23!
1O~y6!G

~7!
and

m5
1

2F12y2
d

~2d21!2

1y4
d@32d4288d31162d2299d130#

4~2d21!4~4d23!2~d21!
1O~y6!G .

~8!

It is clear that successive powers ofy bring additional pow-
ers of 1/d from the additional energy denominators, as pro
ised, so that theO(y6) terms are actuallyO(y6/d5) and
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O(y6/d3) for the energy and magnetization, respective
Reorganizing these expressions in powers of 1/d yields

EAF5V2
J

4F11
y2

2d
1

y2

4d21
y2~82y2!

64d3

1
y2~1623y2!

256d4 1O~1/d5!G ~9!

and

m5
1

2F12
y2

4d
2

y2~81y2!

32d2 1O~1/d3!G . ~10!

The appropriate expressions for the Heisenberg model
now be obtained by taking the limity→1.

C. Goldstone modes and the long-wavelength physics

Because the Ne´el state involves a broken continuous sym
metry, we know that there must exist a gapless Goldst
mode, the magnon. In the presence of Ising anisotropy,
magnon is massive, and is perturbatively related to the sin
spin flip. Thus, we could imagine using the same decom
sition of the Hamiltonian into an Ising andXY piece to com-
pute the magnon spectrum perturbatively, and then reana
the expression in terms of the 1/d expansion. This is imprac
tical, but it is instructive to see why.

In 0th order~i.e., in the Ising model!, there is a set ofN/2
degenerate excited states with excitation energye5Jz/2 and
Sz521 obtained by flipping a spin on the black sublattic
and there is a complementary set of excited states withSz
511 obtained by flipping a spin on the red sublattice. The
states resolve themselves into the two polarizations of
magnon band upon performing degenerate perturba
theory in powers ofy5J' /Jz . The results of degenerat
perturbation theory can be summarized in terms of an ef
tive Hamiltonian,

Heff5 (
i& j 5black

Ji , jbi
†bj , ~11!

where bj
† creates a spin flip on sitej and obeys boson

commutation relations,@bi ,bj
†#5d i j . To be concrete,

we have considered the magnon withSz521, so we take
the Hamiltonian to operate in the 1 spin-flip secto
( j 5blackbj

†bj51. The effective Hamiltonian can be solved b

Fourier transform to give a magnon energyemag(kW )
5( j 5blackJ0,jexp@ikW • RW j#. If we were actually interested in
the case in which there was substantial Ising anisotropy,
could simply computeJi , j to the desired order, since ifi and
j aren steps apart on the lattice,Ji , j;Jz@y/d#n, and hence
for small y, Heff is short ranged. It would also seem that t
same logic would justify the self-same expansion for larged,
and indeed~as is implicit in the discussion of the ground
state energy! this is crudely true. However, even thoughJi , j
falls rapidly with n, the number ofnth ‘‘Manhattan’’ neigh-
bors grows just as rapidly, i.e., asdn. For nonzero wave
vector, this does not matter, as the far neighbors contribut
emag with rapidly varying phases, and so the long-range ta
of Ji , j are unimportant. However, forkW very nearkW50W ~or,
.

an

e
e
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,

e
e
n

c-

,

e

to
s

equivalently, nearkW5pW [^p,p,p, . . . &), all terms in the
Fourier transform add in phase, soJi , j must be computed to
infinite order.

Of course the point is that the low-energy Goldsto
modes have exceedingly small phase space in large dim
sion, although they always dominate the temperature dep
dence of thermodynamic quantities at low enough tempe
ture and the asymptotic decay of correlation functions
large enough distances. Thus the Goldstone modes are
tirely unimportant in high dimensions, except for physic
quantities that strongly accentuate the lowest energy exc
tions.

The way to study the Goldstone behavior is in terms o
spin-wave expansion, again suitably reinterpreted in term
the 1/d expansion. We thus start by considering the spinS
Heisenberg antiferromagnet ind dimensions using the
standard32 Holstein-Primakoff bosons to obtain the spi
wave spectrum in powers of 1/S. We will confine ourselves,
here, to the lowest-order theory, as it adequately illustra
the point. The sublattice magnetization is thusS in the clas-
sical Néel state, but receives a correction of orderS0 from
spin-wave fluctuations as

m5SH 11
1

2S
E dkW

~2p!dF 12
1

A12g2~kW !
G1OS 1

S2D J ,

~12!

where the integral overkW is over the first Brillouin zone,

g~kW !5~d!21(
a51

d

cos@ka# ~13!

is the normalized structure factor, and the spin-wave ene
is

emag~kW !5JSA@12g2~kW !#@11O~1/S!#. ~14!

Expanding the integrand in powers ofg and employing

E dkWg2n~kW !/~2p!d5~2n!!/ @~4d!nn! #, ~15!

we obtain

m5SH 12
1

2SF 1

4d
1OS 1

d2D G1OS 1

d2S2D J . ~16!

Clearly, in the limitS51/2, the spin-wave expansion can b
re-expressed as an expansion in powers of 1/d. Indeed this
expression agrees with the earlier result of perturbat
theory iny, in the limit y51, as, of course, it must.

For kW near 0W ~or equivalently, nearpW ), the spin-wave
spectrum~for S51/2) can be expanded in powers ofukW u to
give the usual linear dispersion of the Goldstone mode w
spin-wave velocity

c5~J/d!Ad/2@11O~1/d!#. ~17!
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We can also compute the transverse spin-spin correla
function to leading order in 1/S, and examine the resultin
expression at larged. Using standard results, it is easy
see32 that

^@Si
xSj

x1Si
ySj

y#&

5SeipW •RW i j E dkW

~2p!d

3H F @11g~kW !#eipW •RW i j 1@12g~kW !#

A12g2~kW !
Gcos~kW•RW i j !J

3F11OS 1

S
D G , ~18!

whereRW i j 5RW i2RW j . In the largeR limit, this integral can be
evaluated by approximating the integrand by its smallk ex-
pression, 12g2(kW )'d21k2, which yields the Goldstone be
havior

^@Si
xSj

x1Si
ySj

y#&;SGS d21

2 DAd

p S 1

ApR
D d21

eipW •RW i j

'
2S

Ape
FR0

R G ~d21!

eipW •RW i j , ~19!

whereR5uRW i j u, R05Ad/2pe, G is the gamma function, and
in the second line we have used Stirling’s formula for lar
d. It is easy to see that the integral evaluated above is do
nated by values ofk2;d2/R2, and since the smallk approxi-
mation is valid only so long ask2!d, the Goldstone behav
ior is only valid forR@R0, as is suggested by the form of th
result.

The most efficient way to evaluate properties of the s
tem at low but nonzero temperature is to use the 1/d expan-
sion to compute the fully renormalized zero-temperature
rameters that enter the O~3! nonlinear-s model which
governs the Goldstone modes, namely the spin-wave s
nessrs and the transverse uniform susceptibilityx0. The
susceptibility can readily be computed perturbatively in po
ers of 1/S, and the resulting expression reexpressed in p
ers of 1/d as

x05
1

4Jz
F12

1

4dS 11
3

8SdD1OS 1

Sd2D 1OS 1

d2S2D G .

~20!

In terms of this,rs can be computed from the relation33

rs5c2x0 , ~21!

wherec is the spin-wave velocity given in Eq.~17!.

IV. ONE HOLE IN AN ANTIFERROMAGNET

The one-hole problem has a structure that is nomin
like that of the one-magnon problem, but added factors
1/d make the perturbative approach tractable for all value
n

i-

-

-

ff-

-
-

y
f
f

kW . We define as the unperturbed HamiltonianH0, the Ising
limit of the t-J model, withJ'5t50.

A. The minimal hole with Sz51/2

There are 2N degenerate one-hole ground states ofH0,
where the factor of 2 is due to the global degeneracy of
Néel state, and the factor ofN ~which is the number of lattice
sites! comes from the locations of the empty site~the hole!.
~Henceforth we focus only on the states in which the m
netization is up on the black sublattice.! These states are, in
turn, separated into disjoint Hilbert spaces labeled by
conserved quantum number, the totalz component of spin,
since a hole on a black sublattice site hasSz511/2 and one
on the red sublattice hasSz521/2. For concreteness, w
will focus on theN/2 degenerate states corresponding to
hole on the black sublattice.

We now use degenerate perturbation theory to const
the effective Hamiltonian of one hole

H1
eff5 (

i& j 5black
t i j ci

†cj1 (
i& j 5red

t i j ci
†cj , ~22!

wherecj
† is the fermionic creation operator for a hole on s

j , and for Hermiticity, t i j 5t j i . Once the effective Hamil-
tonian is computed, its eigenstates and eigenvalues ca
found by Fourier transform:

ehole~kW !5 (
j 5black

t0 jexp@ ikW•RW j #. ~23!

To begin with, we study the perturbative expressions for
diagonal term,e0[t i i .

e0522V1
Jz

2 F11y2
2~d21!

~2d21!~4d23!
2z2

8

~2d21!

1O~y4!1O~z4!1O~y2z2!G
522V1

Jz

2 F11
@y2216z2#

4d
1

@y2232z2#

16d2 1O~1/d3!G ,
~24!

where z5t/Jz and y5J' /Jz . The corrections to the hole
self-energy which are independent ofy are the famous string
corrections to the hole self-energy, of which the retracea
paths of Brinkman and Rice34 are a subclass.

Next we study the coupling between second ‘‘Manh
tan’’ neighbor sites~nearest-neighbors on the black subla
tice!. There are 2d(d21) ‘‘true second neighbors,’’ reache
by taking a step to the nearest-neighbor site in one direct
and then a second step in an orthogonal direction, and t
are 2d ‘‘straight line’’ second neighbors reached by takin
two steps in the same direction. Fori and j true second
neighbors,t i j [2t1t Ising, where the factor of 2 in the defi
nition takes account of the fact that there are two minim
paths to the true second neighbor. Heret is given by
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t5
4tyz

d~2d21!~4d23! F12y
~6d326d211!

3~d21!~2d21!~4d23!
2y2

N2

D2
2z2

~528d421368d311160d22314d27!

3~2d21!2~d21!~4d23!~6d25!

1O~y3!1O~z4!1O~z2y!G
5

tyz

2d3F S 12
y

4D1
5

4dS 12
y

2
2

22z2

15 D1O~1/d2!G , ~25!
o
th
s

.’

n

is

n-

ince

ent

nt

pan-

hop

f

a

with

N25294 912d721 834 752d615 070 688d527 924 688d4

17 461 296d324 195 852d211 298 748d2170 325

~26!

and

D2596~2d21!2~d21!~3d22!~4d23!2

3~6d25!~8d29!~8d27!; ~27!

t comes from processes in which, in lowest order, the h
hops twice, followed by a spin exchange which repairs
resulting damage to the spin order. In addition, there i
contribution

t Ising52
32tz5

3d~2d21!2~4d23!2~d21!
@11O~z2!#

52
tz5

6d6F11OS 1

dD G , ~28!

which comes from a process in which a hole circles
plaquette one and a half times, thus ‘‘eating its own string
This process, which was discovered by Trugman5 for d52,
survives even in the Ising limity50. However,t Ising is
higher order in powers of 1/d and so is negligible, even whe
t@J. For straight-line second neighbors,t i j 5t81t Ising8
where

t85
4tyz

d~2d21!~4d23!F12y
~d21!

~4d23!
1y2

N28

D28

1z2
N38

D38
`O~y3!1O~z4!1O~z2y!G

5
tyz

2d3F S 12
y

4D1
5

4dS 12
y

5
2

22z2

15 D1O~1/d2!G ,
~29!

where

N28573 728d6241 088d52514 544d411 145 088d3

21 016 784d21421 204d267 611, ~30!
le
e
a

a
’

D28548~2d21!3~3d22!~4d23!3~6d25!

3~8d29!~8d27! ~31!

and

N3852176d31280d22108d22, ~32!

D385~2d21!3~4d23!2~6d25!, ~33!

and t Ising8 is the corresponding Trugman term which
O(tz9/d9). Because they are higher order in 1/d, we will
henceforth ignoret Ising andt Ising8 relative tot. However, we
shall see below that the difference

t82t5
4tzy2~3d22!2

3d~d21!~2d21!2~4d23!2 @11O~y!1O~z2!#

5
3tzy2

16d4 F11
~131y!

6d
1O~d22!G , ~34!

although smaller thant by a factor of 1/d, plays a critical
role in determining the band structure of the minimum e
ergy hole in an antiferromagnet.

The sign of these terms deserves some comment. S
the lattice structure defined byt i j is not bipartite, the sign of
the matrix elements is physically significant. In the pres
case, since the leading-order contributions tot come from
third-order perturbation theory, the resulting matrix eleme
is positive.

These expressions may be combined to obtain an ex
sion for the bandwidthW of a single hole by adding the
contributions from the different hopping processes. Each
contributes a factor 2t or 2t8 to W, so

W54d~d21!t14dt8. ~35!

Then, using Eqs.~25! and ~29! and expanding in powers o
d21,

dW

t
52yzS 12

y

4D1
5yz

2d S 12
y

2
2

22z2

15 D1O~d22!.

~36!

This result does not make sense unlessW.0 or

z2,
15

22F4d

5 S 12
y

4D112
y

2G . ~37!

Sincez5t/Jz , this illustrates the fact that the motion of
single hole is exchange dominated in the large-d expansion.
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It is important to note that the leading-order express
for t contains one more power of 1/d than the corresponding
matrix element in the effective Hamiltonian for one magno
Indeed, the leading-order behavior of the matrix eleme
connecting sites separated by 2n nearest-neighbor step
(2nth nearest Manhattan neighbors! is t2n;tz2n21yn/d3n,
where the factor oftz2n21}t2n comes from the minimum
number of hops for the hole to propagate this distance,
factor of yn}J'

n reflects the minimum number of spin flip
needed to restore the spins to a ground-state configura
following the passage of a hole, the factor ofd2(3n21) comes
from the accompanying energy denominators at this orde
perturbation theory, and one additional factor of 1/d comes
from the overall normalization of the Hamiltonian. Becau
of these extra factors in the expression fort i j , its contribu-
tions to the hole energy fall rapidly with distance in hig
dimensions, where the number of 2n-step paths is 2d(2d
21)2n21, and so the number of 2nth Manhattan neighbors
can grow no faster than (2d)2n. Thus, the longer range
pieces oft i j can be neglected for any value ofkW in large
enough dimension.

The effective Hamiltonian obtained by retaining on
terms out to second Manhattan neighbors is given by

ehole~kW !5e022d~t82t!1~2d!2tg2~kW !

14~t82t! (
a51

d

cos2@ka#. ~38!

If we ignore the small difference, (t82t), then the mini-
mum energy hole states are located on thed21 dimensional
hypersurface,g(kW )50; since the band structure for the no
interacting tight-binding model ise free522tg(kW ), and that
model is, in turn, particle-hole symmetric, this hypersurfa
is precisely the Fermi surface of the half-filled band in t
absence of interactions. With higher-order terms in pow
of 1/d ~which produce a nonzero value of (t82t).0) the
minimum energy of a single hole occurs atkW5(1/2)pW and
the 2d21 symmetry-related points.

We emphasize that, although we have treated the eff
of t perturbatively, we have not made a small-t approxima-
tion. The present results are valid for arbitraryt/J, so long as
it is not parametrically large~i.e., so long ast!dJ). None-
theless, because each hop of the hole may breakO(d) bonds,
the large-d limit is exchange dominated.

B. Magnetic polarons with larger spin

In low dimensions, and fort@J, it is believed that a
single hole in an antiferromagnet produces a ferromagn
bubble in its vicinity, or, more precisely, that there is a ser
of level crossings as a function oft/J at which the totalz
componentSz of the spin of the ground state for a single ho
state steadily increases. However, in the large-d limit, the
antiferromagnetic energy always dominates unlesst is para-
metrically larger thanJ, i.e., unlesst;dxJ, where x is a
positive exponent~which we will estimate below!. Such
parametrically large values are beyond the scope of
present analysis.
n

.
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e
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ts
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e

To estimate the magnitude oft/J at which ferromagnetic
bubbles first appear, we consider a straightforward gene
zation ~to d.2) of the calculation of Emery, Kivelson, an
Lin13 for a hyperspherical ferromagnetic polaron in the lar
size limit ~where discrete lattice effects can be neglecte!.
We balance the magnetic energy lost in the volume of
polaron against the zero-point energy~computed in the
effective-mass approximation! to localize the hole in the in-
terior of the polaron. This results in a polaron with a radiu
L'@2tp/Ad(V2EAF1J/4)#1/(d12), whereAd is the area of
the unitd-dimensional hypersphere

Ad52~Ap!d/G~d/2!'Ad/p~A2pe/d!d, ~39!

and in the final line, we have used Stirling’s approximati
for larged; the polaron has spinSz'AdLd/d. By definition,
the spin of the polaron must be substantially greater tha
which means thatt@d2J. We conclude that in the large-d
limit, the low-energy hole branch is always the naive,Sz

51/2 vacancy state, and that local ferromagnetism is nev
relevant piece of the one-hole physics.

V. EFFECTIVE INTERACTIONS BETWEEN TWO HOLES

Broadly speaking, the effective interactions between t
holes are of two kinds, ‘‘potential,’’ which are induced b
distortions in the antiferromagnetic order, and ‘‘dynamic
which minimize the zero-point kinetic energy of a hole.

At long distances, the effective potential of interactio
can be computed by considering change in the magn
Hamiltonian induced by two static holes at lattice sites 0 a
i ,

H252
J

dF(
j

~ i !

SW i•SW j1(
k

~0!

SW 0•SW kG , ~40!

where( j
( i ) signifies the sum over the nearest-neighbor s

of i . Then, on integrating out the magnetic degrees of fr
dom, we obtain

Veff~RW i !52J2/dE dt(
j

~ i !

(
k

~0!

^T@SW i~ t !•SW j~ t !2^SW i•SW j&#

3@SW 0•SW k2^SW 0•SW k&#&1•••, ~41!

where••• are higher-order terms in powers ofJ, which are
also of shorter range as a function ofuRW i u, t is the imaginary
time, andT is the imaginary-time ordering operator. It
straightforward35 to determine from linear spin-wave theor
that

Veff;1/R~2d21!, ~42!

which is a short-range potential in the sense that the inte
over space ofuVeffu is noninfinite in all dimensions greate
than d51. ~The integral over space ofVeff itself is easily
seen to be 0.! Moreover, the long-distance tails ofVeff de-
crease in importance asd increases. For this reason, we w
ignore the power-law tails ofVeff and simply consider its
dominant, short-distance pieces.
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The nearest-neighbor interaction between two ho
~which is certainly attractive in the canonical case,V5
2J/4) can readily be computed from perturbation theory
powers ofy5J' /Jz :

Veff~ ê1!5
V

d
2

Jz

4d
@11O~y4!#5

V

d
2

Jz

4d
@11O~1/d3!#.

~43!

There is a considerably weaker interaction~which, in fact, is
repulsive! between second nearest-neighbor holes:

Veff~ ê11ê2!5
Jzy

2

4d~2d21!~4d23!
@11O~y2!#

5
Jzy

2

32d3 @11O~1/d!#. ~44!

Indeed, to this order, the effective interaction is the same
all second Manhattan neighbors,Veff(2ê1)5Veff(ê11ê2)@1
1O(1/d3)#. Clearly, for further Manhattan neighbors, th
effective interactions are down by additional powers of 1d.

The kinetic terms, in general, generate fairly complica
interactions of the form

Teff5(
i jkl

Ti jkl ci
†cj

†ckcl , ~45!

where, as before,ci
† is a fermionic creation operator for

hole at sitej . However, in larged, it is strongly dominated
by its short-range components, of which the dominant te
are a potential interaction between nearest-neighbor h
@which renormalizesVeff(ê1)# and a pair-hopping term. In
deed, combining the potential and kinetic terms to lead
order in 1/d, we find a two hole contribution to the effectiv
Hamiltonian~i.e., the interaction part of the effective Hami
tonian, of which Eq.~22! is the noninteracting piece!:

H2
eff5Ueff(

^ i , j &
ci

†cj
†cjci2Teff (

^ i , j ,k&
cj

†ci
†cjck1O~1/d3!,

~46!

where in the pair-hopping term̂i , j ,k& signifies a set of sites
such thati andk are both nearest neighbors ofj ~which we
define to include the casei 5k), and

Ueff5
V

d
2

Jz

4dF11
8z2

~d21!~2d21!
1O~y4!1O~z4!

1O~y2z2!G5
V

d
2

Jz

4dF11
4z2

d2 1O~1/d3!G ~47!

and

Teff5
tz

d~d21!F11
y

4~d21!
1O~y2!1O~z2!G

5
tz

d2F11
1

dS 11
y

4D1O~1/d2!G . ~48!

The pair-hopping termTeff has an interesting history: In
early work on high-temperature superconductivity, it was
ten claimed that, whereas the motion of a single hole is
s

r

d

s
es

g

-
-

hibited by antiferromagnetic order, pair motion appears to
entirely unfrustrated. It was suggested that this might in
cate a novel~nonpotential! source of an attraction betwee
holes which could be the mechanism of high-temperat
superconductivity. At first sight, the fact thatTeff;d22,
while the single-particle hopping term ist;d23, appears to
support the validity of this idea in larged. However, the
fallacy of this argument was revealed in the work
Trugman,5 who showed that this mode of propagation of t
hole pair was frustrated by a quantum effect which origina
in the fermionic character of the hole. In larged, this frus-
tration effect is particularly graphic. Pair binding is enhanc
if we ignore single-particle hopping, and diagonalizeH2

eff .
Of course, any state in which the two holes are farther th
one lattice site apart are eigenstates ofH2

eff , so long as terms
of this range are neglected~because they are of higher orde!
as in Eq. ~46!. For the states in which the two holes a
nearest neighbors,H2

eff can be block diagonalized by Fourie
transform, with the result that there ared bands of eigen-
states labeled by a band index and a Bloch wave vectorkW . It
is straightforward to see that none of these bands dispe
~their energies are independent ofkW ) and thatd21 of these
bands have energyUeff, while the remaining band has energ
Ueff12Teff. This final band, which feels the effect of pa
propagation, has the highest energy. On the other hand, i
holes were bosons, this latter band would have energyUeff

22Teff, which is much closer to what one might have e
pected.

It follows from this argument that coherent propagation
a pair is not an effective mechanism of pair binding and t
the short-range attraction between two holes in an antife
magnet arises from the fact that two nearest-neighbor h
break one less antiferromagnetic bond than two far-separ
holes. This interaction is sufficient to produce a two-ho
bound state because the one-hole spectrum has an esse
degenerate band minimum along thed21 dimensional mag-
netic Brillouin zone. As in the Cooper problem, this gives
constant density of states at low energy and any attrac
interaction is sufficient to produce a bound state.

VI. FINITE HOLE CONCENTRATION

We have suggested13,8 that, in general, a doped antiferro
magnet ind>2 will phase separate into a hole-free antife
romagnetic region and a hole-rich region. There is now s
stantial evidence, both numerical13,14 and analytical,13,36,37

that this is the case for thet-J model ind52. Phase separa
tion is, of course, a first-order transition, so it must be stu
ied by comparing the total energy of various candidate
mogeneous and inhomgeneous states to find the true gr
state at fixed hole density.

In large dimension, there are many metastable sta
which are, in a sense, ‘‘local’’ ground states of given ch
acter. While the large-d limit allows us to compute the en
ergy and character of a given candidate ground state exa
it is almost never possible to prove that we have actua
identified the global ground state. Specifically, we have co
puted the energy of various candidate states~as discussed
below! and found that, of these, the lowest-energy state
phase separated into an undoped antiferromagnet and a
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rich phase with a very lowelectrondensity, i.e., with hole
concentration equal to or nearly equal to 1. Moreover, giv
that the interaction between two holes is strongly attrac
~of order the hole bandwidth! at short distances, and weak
attractive at long distances, we feel that it is extremely
likely that any dilute hole-liquid or hole-crystal phase in t
antiferromagnet is stable in larged. Below, we show that the
same instability shows up in a dilute domain-wall phase
which the holes are concentrated on an array of widely se
rated domain walls.

What this means is that, under the assumption that
have not overlooked a lower-energy state~which we consider
unlikely!, we can obtain a complete and exact understand
of the zero-temperature phase diagram in thed→` limit by
considering the phase coexistence between the undope
tiferromagnet~which we have already characterized! and a
very hole-rich or dilute electron phase. We emphasize
the physics of phase separation and domain walls~Sec. VII!
in large-d is not exchange dominated because it does
involve breaking a large number of bonds.

A. Properties of dilute electrons in larged

We now consider the ground-state properties of dil
electrons on ad-dimensional hypercubic lattice, ford large.
Near the bottom of the band, the electron dispersion rela
is approximately quadratic, i.e.,e(kW )'22t1tk2/d is a good
approximation so long as each component ofkW is small com-
pared to 1, or typically, thatk2!d. Also in this limit, the
interactions between electrons are weak~since they rarely
approach each other!, and so can be ignored to first approx
mation. Thus, we will begin by considering the properties
the noninteracting, quadratically dispersing electron gas id
dimensions. For this problem, the Fermi momentum a
function of the chemical potential,m, is kF5A(m12t)d/t
for m.22t, and the corresponding density is

n5
2Ad

d S kF

2p D d

5
2

Apd
SA e

2pd
kFD dF11OS 1

dD G , ~49!

whereAd is given in Eq.~39!, a spin-degeneracy factor of
has been included, and the final equality uses the largd
expression forAd . Note that whenever the conditionkF

2!d
is satisfied, the electron density is exponentially small
large d, so our approximations are exponentially accura
The energy per site of this system can be computed rea

Egas522tn@12kF
2/~2d14!#. ~50!

B. Conditions of thermodynamic equilibrium

In general, for two phases to be in thermodynamic eq
librium, they must have equal chemical potentials,m. How-
ever, here, the undoped antiferromagnetic phase is inc
pressible, so that the zero-temperature chemical potenti
undetermined. Then the condition for the electron gas to
in equilibrium with the antiferromagnet is

m5@EAF2Egas~m!#/@12n~m!#, ~51!

whereEgas is the ground-state energy per site of the elect
gas andn is the electron density, both of which are functio
n
e
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of m. Thus, ifEAF,22t, the only thermodynamically stabl
zero-temperature phases of thet-J model are the undoped
antiferromagnet and the vacuum~no electrons!. On the other
hand, if EAF.22t, phase coexistence is possible betwe
the antiferromagnet and a ‘‘metallic’’ phase with allowe
electron densities,n<nmax, wherenmax is the electron den-
sity at the equilibrium value ofm. We shall see shortly tha
bothEgasandn are exponentially small at larged, so that to
exponential accuracy,

m5EAF . ~52!

If we use the larged expression forEAF , we conclude that
the metallic state is stable only ifJ,4t@11O(1/d)#, and
that if this condition is satisfied, the maximum stable dens
of the metallic phase is

nmax5
2

Apd
FAe~4t2J!

4pt GdF11OS 1

dD G . ~53!

Notice that this quantity is small~and hence our approxima
tions are justified!, even in the limitt@J, where

nmax→~2/Apd!F e

pGd/2

. ~54!

C. Effective interactions in the metallic state,
and the conditions for superconductivity

Since the electron density in the metallic state is sm
interaction effects are dominated by pairwise collisions
tween electrons. In the triplet channel, there is a near
neighbor electron-electron repulsion of strength (4V
1J)/4d, while in the singlet channel there is an infinit
on-site repulsion, and a nearest-neighbor attraction
strength (4V23J)/4d. For the canonical choice ofV5
2J/4, which we adopt in most of this section for simplicit
of notation, the attractive interaction in the singlet channe
simply 2J/d.

We can look for evidence of a simples-wave instability
of the metallic state in the low-density limit by studying th
conditions for the existence of a solution to the BCS g
equation. First, consider the unperturbed~noninteracting!
thermal Green function at low, but finite temperature

G~kW !5

tanhFb2 ~e~kW !2m!G
2@e~kW !2m#

, ~55!

wheree(kW )522tg(kW ) andg(kW ) is defined in Eq.~13!. Now
it is straightforward to show that, in the singlet channel, t
BCS equation for the transition temperatureTc may be writ-
ten in terms of the corresponding real-space Green funct

G0[
1

N(
kW

G~kW !, ~56!

G1[
2

N(
kW

G~kW ! (
a51

d

cos~ka!52
d

tN(
kW

e~kW !G~kW !,

~57!
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and

G2[
2

dN(
kW

G~kW !F (
a51

d

cos~ka!G2

5
d

2t2N
(

kW
e2~kW !G~kW !

~58!

as theU→` limit of

05~11UG0!~12JG2 /d!1JUG1
2/2d2, ~59!

or, in other words,

1

J
5

G2

d
2

G1
2

2d2G0

. ~60!

Sincee(kW ) appears in the numerators ofG1 and G2, as
well as in the denominator ofG(kW ), one may expressG1 and
G2 in terms ofG0 and sums in whiche(kW ) does not appea
in the denominator. Now, to find the critical ratio oft/J at
which Tc→0, note that, form near the bottom of the ban
(m'22t), the approximation tanh@b(e(kW)2m)/2#'1 can be
used in the various sums, except inG0. Then Eq.~60! be-
comes

1

J
2

1

2t
52

1

8t2G0

. ~61!

Consequently the effective interaction is attractive and
BCS transition temperature fors-wave pairing is nonzero, so
long as

J/t.2. ~62!

This result is valid for dilute electrons in any dimensio
greater than 1, and is in agreement with earlier results in
dimensions.13,38,3 Notice that Eq. ~61! with tanh@b(e(kW)
2m)/2# set equal to 1 inG0 is the condition for a two-hole
bound state, but in this caseG0 is divergent only ind51 and
d52. Thus, in higher dimensions, the critical value ofJ/t
for a two-hole bound state depends ond, and tends to infinity
asd→`.

For J/t,2, the direct pair interaction is repulsive in a
channels, so there is no solution of the BCS equations. H
ever superconductivity could emerge in a higher angu
momentum channel by a variant of the Kohn-Luttinger
fect. This sort of instability has been studied extensively
two dimensions,3 and could probably be analyzed in muc
the same way here. However, as the electron density is
way exponentially small in larged, and these effects are o
still higher order in the density, they occur at energy sca
that are exponentially smaller than the exponentially sm
Fermi energy.

One can, of course carry through the same analysis
arbitrary values ofV, in which case, Eq.~61! is replaced by

3J

4
2V.2t ~63!

and, in general, there is no superconducting transition
V.3J/422t. Recently, Riera and Dagotto39 have shown that
a sufficiently large value ofV prevents bound states of pai
of holes in the two-dimensionalt-J model.
e
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Because there are no particularly good nesting vectors
consider it unlikely that the hole-rich phase is subject to a
sort of charge or spin-density wave instability of the hyp
spherical Fermi surface in large dimension.

VII. ONE DOMAIN WALL

As mentioned previously, one feature of this large-d per-
turbation theory is that there are many interesting sta
which, if not the global ground state of the system, are
least the lowest-energy eigenstates in a restricted secto
the Hilbert space. In particlar, domain-wall states are int
esting in their own right, although they prove to be of spec
importance in the presence of long-range Coulomb inter
tions.

First of all, we define a domain wall to be ad21 dimen-
sional hypersurface which cuts the full lattice in two, su
that far from the domain wall the system is undoped, a
hence antiferromagnetically ordered. Since, as we shall
in larged such domain walls are always smooth~transverse
quantum fluctuations of the position of the domain wall a
suppressed by powers of 1/d), we can characterize such
state by the mean position of the domain wall, its net cha
~i.e., the concentration of holes per hyperarea! and the phase
shift ~if any! suffered by the antiferromagnetic order
crossing the domain wall. In addition, since domain walls
along lattice symmetry directions in all cases of interest,
can classify them by the broken crystal point-group symm
try. Here we analyze what we believe to be the physica
most important domain walls, but we have not yet carried
an exhaustive study of other possible domain-wall structu

A. ‘‘Vertical,’’ site-centered domain wall

A vertical domain wall lies perpendicular to a princip
axis of the hypercube, which we call thex axis, and its
location is thus specified by a singlex coordinate. If the
domain wall preserves reflection symmetry relative to a
perplane that is perpendicular to thex axis and crosses thex
axis at a lattice site~which we will take to bex50), the
domain wall is said to be site centered; if this reflection pla
passes half-way between two adjacent lattice sites~which we
will take to bex50 andx51), the domain wall is said to be
bond centered. We begin with the case of a vertical, s
centered domain wall with charge density of one hole
site, i.e., one that corresponds to a hypersurface of em
sites.

We thus consider as the unperturbed part of the Ham
tonian, H0 the Ising part of thet-J model with t50, but
possibly with different choices of the Isingz axis to the right
(x.0) and to the left (x,0) of the domain wall. ThenH1 is
all the remaining interactions, including all terms invol
ing t.

The ground state ofH0 in the appropriate charge sector
fourfold degenerate: it has no electrons in the domain w
~one hole per site! and one of the two possible Ne´el states in
each of the two ‘‘halves’’ of the system. The energy p
domain-wall site~relative to the energy of the uniform, un
doped Ne´el state! can now be calculated perturbatively, an
it can be seen straightforwardly that the perturbation the
is again controlled by larged; for instance, from second
order perturbation theory we find
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evert5
~d11!Jz

2d H 11
y2~4d223d22!

~d11!~2d21!~4d23!J
2

8Jzz
2

@2d211cos~d!#
1•••

5
Jz

4 H 11
~21y2!

2d
1

~y2264z2!

4d2 1O~1/d3!J ,

whered is the phase shift of the Ne´el order across the do
main wall.

It is clear that to this order in 1/d, the energy is indepen
dent of d. However, from the perturbative expression, w
can extract the leading orderd dependence:

evert~d!2evert~p!5
2t2

Jz

@cos~d!11#

d2 $11O~1/d!%.

~64!

Clearly, then, the energy is minimized by an ‘‘antiphas
domain wall, with d5p. The preference for an antiphas
domain wall is produced by the transverse fluctuations of
domain wall, and it is likely to survive in all lower dimen
sions. The only cost of large transverse amplitude fluct
tions of an antiphase domain wall is an increase in the
face energy, whereas, for any otherd, there are regions o
impaired spin correlations. Indeed, we know from the so
tion of the one-dimensional electron gas with repulsive int
actions that, near half filling, the holes are solitons that
locally like antiphase domain walls in that the magnetic c
relations are shifted byp as one passes a hole, although
course there is no long-range magnetic order in this cas

The empty domain wall we have been considering is
cally stable so long asJ/t is sufficiently large (J/t.Yc
54@11O(1/d)#!, but is unstable for smaller values ofJ/t.
To see this, consider the state in which one electron is tra
ferred from the surrounding antiferromagnet to the bottom
the domain-wall band. In first-order degenerate perturba
theory int, the bottom of the domain-wall band is easily se
to bee522t(d21)/d1 . . . , i.e., equal to the band bottom
of the dilute electron phase to leading order in 1/d. This
means that, for the domain wall to be in local equilibriu
with the surrounding antiferromagnet, it must have appro
mately~up to higher-order corrections in 1/d) the same elec-
tron concentration,nmax in Eq. ~53!, as the hole-rich phas
which can exist in equilibrium with the antiferromagnet. It
in this sense that a domain wall can be viewed as a form
local phase separation. Since even whenJ/t!1, nmax is ex-
ponentially small, the existence of dilute electrons within t
domain wall whenJ/t,Yc does not significantly affect an
of the other calculations described above. However it d
imply that these electrons render the domain wall meta
and, under appropriate circumstances, superconducting.
of course, implies a qualitative difference in the electro
properties of domain walls for small and largeJ/t.

B. Bond-centered vertical domain wall

If we fix the hole density at one~or approximately one!
hole per hypersurface unit cell, as above, it is immediat
clear to 0th order in 1/d that a bond-centered domain wa
will have considerably higher surface tension than a s
’
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centered wall: On the one hand, more antiferromagn
bonds are broken by the bond-centered wall. On the o
hand, only a very small fraction of the states in the electro
band have energy of order2td0, so even if we ignored the
constraint of no double occupancy, and allowed the rema
ing electrons in the domain wall to minimize the kinet
energy part of the Hamiltonian, the gain in kinetic ener
will be higher order in 1/d than the loss of exchange energ

Of course, if we were to roughly double the concentrati
of holes, then a bond-centered domain wall can be viewe
simply two nearest-neighbor site-centered domain wa
This situation will be considered, below, when we consid
interactions between domain walls.

C. Other domain walls, domain-wall kinks, etc.

There are many other kinds of domain walls. For instan
one could consider a ‘‘diagonal’’ domain wall, either bon
or site-centered, which is infinitely extended ind22 direc-
tions, and lies along a 45° angle relative to the two rema
ing lattice directions, which we will call ‘‘x’’ and ‘‘ y.’’ As
an example, one could construct a bond-centered diag
domain wall by placing holes in thex-y plane along a ‘‘stair-
case’’ of nearest-neighbor sites obtained by first taking a s
in the x direction, then a step in they direction, and so on.
To zeroth order, this diagonal stripe has the same energy
hole as the vertical, site-centered stripe.

To compare the energies of different sorts of dom
walls, we imagine finding the state of minimum energy o
system of size 2N32N in the x-y plane, and of infinite
extent in the remainingd22 directions. Considering the pro
jection of the problem on thex-y plane, we study the pos
sible ground states of the system with 2N holes per plane, in
the presence of a strong staggered field on the boundary
favors an up spin on the red sublattice on the 2N sites nearest
the lower corner~i.e., for pointsx50,0<y,N and 0<x
,N,y50) and the opposite field, which favors up spins
the black sublattice, on the 4N22 sites which form an uppe
‘‘cap’’ i.e., the points x50,N,y,2N, 0<x,2N,y52N
21, andx52N21,N,y,2N. These boundary condition
force the system to have an antiphase domain wall of len
2N sites ~or greater!, but permits it to choose whether t
have a vertical, diagonal, or a piecewise vertical domain w
with some concentration of right-angle kinks.

The kink energy is readily computed perturbatively
powers ofy andz, and it also can be reexpressed in powe
of d21:

Ekink5
Jz

d H y2~4d3213d2112d22!

4~d21!~2d23!~4d25!

1
4z2~d23!

d~2d23!~d21!
1•••J

5
Jz

8dH y21
y2

2d
1

~y2164z2!

4d2 1OS 1

d3D J , ~65!

which is manifestly positive in larged. @Here Ekink is the
energy per site of the (d22) dimensional hyperline at which
a site-centered vertical domain wall makes a right-an
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bend.# Similarly, the energy of a zigzag diagonal doma
wall can be compared to the energy of the vertical wall co
puted above:

ediag2evert5
Jz~d11!

4d F dy2

~4d23!~2d23!~2d21!~d221!

1
16z2

~d221!~2d21!
1O~z2y!1O~y4!1O~z4!G

5
Jz

4d3F8z21
1

dS y2

16
112z2D1OS 1

d2D G . ~66!

Thus it seems that the vertical domain wall has the low
energy in large dimension. However, it is easy to see that
is a model-dependent result. For example, one can rea
construct models on a ‘‘Cu-O’’ lattice40 rather than a hyper
cubic lattice in which a diagonal, or bond-centered verti
domain wall has the lower energy.

D. Interactions between two domain walls

Two domain walls attract each other at long distan
through the exchange of spin waves, in much the same
as two static holes.~See above.! Again, in high dimensions
we expect this effect to be less important than the short-ra
attraction between domain walls. For instance, to lead
order, there is an attractive interaction energy per unit hyp
area between nearest-neighbor vertical site-centered do
walls which to leading and next to leading order is simp
equal to the nearest-neighbor attraction between two ho
Eq. ~43! above.

VIII. BEHAVIOR IN LARGE BUT FINITE DIMENSION

We have found that, in some instances, the electron
netic energyt may play a relatively small role in the physic
in large d, because only states exponentially near the b
minimum have energies of order2td0, while the bulk of the
states have energies of ordert/Ad. Thus, these states wi
only come into play whent/J gets to be parametrically large
t/J;Ad, where the larged theory is more difficult to con-
trol. In such a regime our results are less complete, and m
subject to worries that there could be states we have mis
For instance, the perturbative treatment of the one-hole p
lem is no longer well controlled by larged: As discussed
above, the effective hopping matrix element to the 2nth
Manhattan neighbor is of ordert(t/J)2n21/d3n, while the
number of such neighbors increases asd2n. Thus, for t/J
;Ad, the contribution of far-neighbor hops to the hole e
ergy for kW near 0 orpW does not decrease withn. Since this
only matters for a very small fraction of one hole stat
while for generic values ofkW , only the smalln terms are
important, it is unlikely that this problem leads to any si
nificant changes in the qualitative physics of the dilute-h
problem. It does, however, mean that we cannot be quit
confident of the completeness of our understanding of
problem in this limit, as whent/J is not parametrically large

Nonetheless, with certain plausible assumptions and s
guidance from the results of various studies ind52, we can
elucidate much of the behavior of thet-J model in this re-
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gion of parameters, as well.~Note, as mentioned previously
our results here are consistent with those obtained usin
somewhat different approach, for the larged Hubbard model
~Ref. 2.!

A. The phase diagram forJd1/2/t@1

To begin with, we consider the behavior of the syste
when J/t;1/Ad is parametrically small, butJAd/t@1 is
still large.

For energies away from the band edge, i.e., fore;t/Ad,
the density of states per spin polarization of the tight-bind
model on the hypercubic lattice in large dimension is read
computed by the method of steepest descents:

r~e!5~2p!21E dxeixe@J0~2tx/d!#d

5
1

2t
Ad

p
exp@2e2d/4t2#@11O~e2!#. ~67!

From this it is clear that, so long as the electron density
low enough, we can approximately ignore interactions
tween electrons,~i.e., the infinite, on-siteU and the nearest
neighbor antiferromagnetic interactions!, the density as a
function of chemical potential~for m<0) is readily seen to
be

n~m!5erfc~Adm2/4t2!1O„n~m!2
…, ~68!

where erfc is the complementary error function, and the
ergy density is

Egas~m!52
2t

Apd
exp@2dm2/4t2#1O„n~m!2

…. ~69!

Thus, there is a regime of parameters, 1@J/t@2/Ad in
which the density ofelectronsis small~but not exponentially
small! and interactions between electrons in the ‘‘gas’’ pha
can still be neglected in any total-energy calculation. Un
these conditions,uEgasu!uEAFu and 12n'1, so from Eq.
~51!, it is easy to see that the density of electrons in a ho
rich phase in thermodynamic equilibrium with the undop
antiferromagnet is

nmax5erfc~JAd/4t !1O~nmax
2 !. ~70!

B. The phase diagram for 1@Jd1/2/t

WhenJ/t is reduced still further, so thatJAd/t gets small,
nmax approaches 1, and it is no longer possible to ignore
effects of interactions in the hole-rich phase. In this limit, w
lose the possibility of quantitatively reliable results based
our large-d approach. However, for very smallJ/t and den-
sities near 1, it is reasonable to expect the ‘‘electron ga
state to be ferromagnetic, at least locally. The ferromagn
phase is noninteracting in any dimension whenV52J/4,
corresponding to the canonical definition of thet-J model. In
that case, the equilibrium between the ferromagnetic ho
rich phase and the undoped antiferromagnet can be c
puted exactly. Using the large-d expression for the density o
states in Eq.~67!, we obtain the implicit expression form,
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m5@EAF2Eferro#/@12n~m!#, ~71!

where the ground-state energy of the ferromagnetic Fe
gas is

Eferro52
t

Apd
exp@2dm2/4t2#, ~72!

the electron density is

n~m!5~1/2!@2Q~m!2sgn~m!erfc~Adm2/4t2!#, ~73!

and Q is the Heaviside function. We can evaluate this e
pression in the limit of smallJAd/t:

m5
2t

Ad
Aln[2t/ApdJ] @11O~JAd/t !# ~74!

and

12nmax5
J

2m
@11O~JAd/t !#. ~75!

This, finally, corrects the unphysical aspect of the ph
diagram ford→`, in that it implies that the boundary of th
two-phase region approaches the zero doping axis„as
(JAd/t)(ln@2t/ApdJ#)21/2

… asJ/t→0. This is shown in the
phase diagram in Fig. 2.~Note that, because all interactio
effects vanish in the ferromagnetic state, the location of
coexistence line between the ferromagnetic Fermi liquid
the undoped antiferromagnet can be computed accurate
any finite dimensiond, for which EAF is known.13 For d
52, for instance, 12nmax5BAJ/t whereB'0.61.!

For parametrically smallJ/t and larger electron concen
tration, the nature of the phase diagram in large but fin
dimension is currently unexplored.

IX. THE EFFECT OF COULOMB INTERACTIONS

The t-J model has been widely studied because it is s
posed to represent the most important low-energy physic
a system of strongly interacting charged particles. It is
sumed that the long-range part of the Coulomb interac
can be ignored provided it is fairly heavily screened by
surrounding dielectric background. But this assumption
not valid for a state which is macroscopically inhomog
neous. In the presence of Coulomb interactions, we nee
do thermodynamics at fixed mean particle density, and
system must be neutral at long length scales, i.e., phase s
ration is forbidden. In a system with an average elect
concentration 1,n,nmax, and a long-range but ‘‘weak’’
Coulomb interaction in addition to the strong short-ran
interactions of thet-J model, we encounter a class of ph
nomena that we have named7 ‘‘frustrated phase separation.
Here, the system is homogeneous~neutral! on long length
scales, but inhomogeneous on short length scales, with in
leaving regions that look locally like the two phases th
would coexist in the absence of the Coulomb interactions
is the purpose of the present section to explore the co
quences of frustrated phase separation in thet-J model plus
‘‘weak’’ long-ranged Coulomb interactions in the limit o
larged.
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We define the Coulomb interaction ind dimensions by a
generalized Poisson equation

2¹2f~rW !5¹W •EW 5~Q/d!r~rW !, ~76!

wheref(rW) is the scalar potential,EW (rW) is the electric field,
r(rW) is the particle density,

U~rW !52~Q/2d!r~rW !f~r !5dEW •EW /2Q ~77!

is the energy density, andQ is the effective charge~or back-
ground dielectric constant! which determines the strength o
the Coulomb interaction. One could, of course, imagine d
ferent ways of scalingQ in the large-d limit. Given that we
are after the physics of frustrated phase separation, we w
to take the limit in such a way that~i! macroscopic phase
separation is forbidden but~ii ! for a homogeneous state, th
long-range part of the Coulomb interaction is unimporta
compared tot andJ. This is accomplished by taking the lim
in such a way thatQ does not depend ond.

A. An effective model for ‘‘frustrated phase separation’’

In a previous publication, we considered a tw
dimensional model which we argued represented the phy
of frustrated phase separation at a coarse-grained level.
model is easily generalized to arbitrary dimension:

H52
J
4(

^ i , j &
~s i21!~s j21!1~1/2!(

iÞ j
VC~ i , j !@s i2s̄#

3@s j2s̄#, ~78!

wheres i51 if ‘‘site’’ i is a hole-free region ands j521 if
‘‘site’’ j is a hole-rich region,J is a short-ranged ‘‘ferro-
magnetic’’ interaction, which promotes macroscopic pha
separation of the two coexisting phases,VC is the Coulomb
interaction, suitably defined on the lattice, and

s̄5N21(
j

s j ~79!

is the mean charge per ‘‘site.’’ In this model, we imagin
that sites represented small regions which were nonethe
large enough that the local state could be described as b
one of the two phases that would be in equilibrium with ea
other in the absence of the Coulomb interaction. In
present large dimensional context, it is possible to derive
effective Hamiltonian microscopically, identifying the site
in the effective model with the original sites in thet-J model,
the s i51 state with a site occupied by an electron, thes i
521 state with an unoccupied site, andJ equal to the
nearest-neighbor attraction between two holes, derived in
~43! above. This model is insensitive to the fact that t
hole-rich phase has a nonzero electron concentration
J/t,Yc , but since the electron concentration is always e
ponentially small, this error makes no difference in the en
getics and structure of the various phases of frustrated s
ration. Similarly, it ignores the fact that in each disconnec
region of ~hole-free! antiferromagnet, there is a potenti
ground-state degeneracy associated with spin-rotational s
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metry; this might affect the finite-temperature behavior
the system, but has no effect on the ground-state phase
gram.

We have studied41 the ground-state phase diagram of th
model for d52 ~and for Vc(rW)5Q/r , rather than the true
two-dimensional ‘‘Coulomb’’ interaction,Vc(rW)5Q ln@r#);
the results there, as well as the results of exact solution42 of
a largeN, ‘‘spherical,’’ version of the same model, lead
the conclusion that in all dimensions, there are a numbe
ubiquitous characteristics of the ground-state phase diag
of Eq. ~78!. Specifically, for very largeQ/J, the ground state
is the ‘‘Wigner crystal’’ phase, or in other words, the grou
state of the Coulomb term, itself, which, fors̄<0 is a fully
d-dimensional crystal of isolated sites withs521, in a sea
of sites withs511; for example, fors̄50, the ‘‘Wigner
crystal’’ is a state in which one sublattice is occupied bys
511 and the other bys521. Conversely, forQ/J very
small, the ground states consist of a sequence of ‘‘strip
phases of varying period~as a function ofQ/J), or in other
words phases in which the density ofs521 is a function of
one coordinate, and independent of the remaining (d21)
coordinates. In this regime of the phase diagram, for fixeds̄,
the smallerQ/J, the longer the period, as discussed belo
Between the striped phases at smallQ/J and the Wigner
crystal phase at largeQ/J, there typically occur a sequenc
of more complicated phases that interpolate between the
extremes. In two dimensions, we found that these pha
occupy an exceedingly narrow sliver of the phase diagr
but we do not know how generic this behavior is.

B. The properties of the stripe phases

If we confine ourselves to considerations of stripe phas
then the Hamiltonian in Eq.~78! can be reduced to an effec
tive one-dimensional model by summing over the values
the Ising spins in the (d21) dimensions perpendicular to th
modulation direction:

Hstripe52~J/4d!(
j

~s j21!~s j 1121!

1~Q/2d!(
i , j

u i 2 j u@s i2s̄#@s j2s̄#. ~80!

The Madelung energies in this equation involve infin
sums, which are readily carried out numerically,41 but cannot
be done analytically. However, we can make rather go
estimates by replacing the lattice sums by integrals. Spe
cally, for fixed hole concentration,x5(1/2)(12s̄), an array
with period L, which consists of alternating stripes ofs5

21 of width W5(L/2)(12s̄) and intervening regions o
width (L2W) of s511, is seen in this way to have energ
per unit volume~defined to be volume associated with
single lattice site!

Estripe'2JWx1
QL2x2~12x!2

24
. ~81!

This expression is readily minimized with respect toL, or
equivalently the stripe widthW, with the result
f
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W5
12J
Q

x

~12x!2 . ~82!

Finally, recalling that because the lattice is actually discre
the allowed values ofW are actually nearest integer approx
mants to this expression, we obtain the approximate co
tion that widthn.1 stripes are stable for

~2n11!>
24J
Q

x

~12x!2.~2n21!, ~83!

and that width 1 stripes are stable for

1>
8J
Q

x

~12x!2 . ~84!

Of course, for large enoughQ/J, the width 1 stripe phase
should give way to the other phases, mentioned above,
eventually at very large values to the Wigner crystal.

An interesting aspect of this model is that, although
only explicitly involves the enumeration of the charge ord
ing ~i.e., which sites are occupied and which are unoc
pied!, given the fact that there is an energetic preference
antiphase ordering of the spins across a charged stripe
can reconstruct the ground-state spin order~up to a global
rotation! by imposing the constraint that within regions
occupied sites (s51), the spins are antiferromagnetical
ordered and, across unoccupied sites (s521), the antifer-
romagnetic order suffers ap phase shift.~At very small
Q/J, where the width of the charged stripe becomes gre
than 1, a simple generalization of the above microscopic
culations shows that, in larged, the correct ground-state en
ergy and spin order may be obtained by viewing a thic
stripe as a collection of nearest-neighbor fundamental~width
1! stripes and assigning ap phase slip per stripe.!

X. GENERALIZED SPIN LADDERS

There has recently been interest in the properties of s
1/2 Heisenberg ‘‘ladders’’ ind52, where a ladder is effec
tively a one-dimensional system which has finite width in
directions, save one, in which it is infinite. We can read
apply our analysis to the large-d generalization of these lad
ders. For instance, we consider a generalized ‘‘two-leg’’ la
der, in which the lattice has a width 2 ind21 directions, and
is infinite in 1 direction.

Proceeding as above, we first obtain a rigorous up
bound,ENéel52(111/d)J/8, and a rigorous lower bound
Elower52(113/d)J/8 on the ground-state energy per site.
is interesting, in this context, that the ground-state energ
the large-d limit approaches that of the classical Ne´el state,
even though this is a one dimensional system, so we kn
rigorously that there is no true long-range magnetic ord
Indeed, following the Haldane conjecture,43 it is clear that
for any finite d, this system will have exponentially falling
magnetic correlations and a spin gap. However, this phy
will only be manifest at very long distances~probably expo-
nentially long in the large-d limit !, and at shorter distance
the system will appear ordered.44

Again, without repeating the earlier analysis, we can co
pute the ground-state energy in perturbation theory in pow
of y, which, to second order, gives
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EAF52
~d11!Jz

8d F11
y2

d
1

y4~d213d22!

4d3~d11!~2d21!
1O~y6!G ,

~85!
from which we can deduce that

EAF52
Jz

8 F11
~11y2!

d
1

y2

d2 1
y4

8d31
5y4

16d4 1O~1/d5!G .
~86!

XI. EXTRAPOLATION TO d52 AND d53

While the 1/d expansion gives us a small parameter w
which to analyze the problem, it is legitimate to question
relevance of the 1/d results for the physically interesting d
mensionsd52 andd53. ~As there exist good methods fo
solving the present class of problems ind51, we are not
concerned with pushing our results all the way down tod
51.!

For most of the types of order that we have consider
d51 is the lower critical dimension~for quantum disorder-
ing!, and it is reasonable to expect large-d results to be quali-
tatively reliable forzero-temperatureproperties of the sys
tem in d52 and 3, but not for finite-temperature properti
in d52. As mentioned previously, this expectation is bor
out to a large extent by comparison of the large-d phase
diagram of thet-J model shown in Figs. 1 and 2, with th
J

re
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m

ha

e
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nc
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d,

best available data based on analytic and numerical stu
of the model ind52.

We can get more ambitious, and consider how good
quantitative agreement is between available numerical
series results for the model in physical dimensions and
results of the large dimension expansion. In Tables I an
we compare known results for the undoped, spin-1/2 Heis
berg model in physical dimensions with the results
straightforward perturbation theory~in powers of y
5J' /Jz) and of the 1/d expansion. Clearly, both give quan
titatively excellent results. However, whereas perturbat
theory gives its best results if terms only to second order
retained, the 1/d expansion appears to approach closer
correct value with each successive order, at least to fo
order ~which is the highest order we have computed!. In a
sense, for an asymptotic expansion, it is the question o
how high an order do the results improve, even more th
the overall accuracy of the result, which addresses the is
of how small is the expansion parameter.
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