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The ground-state properties of thd model on ad-dimensional hypercubic lattice are examined in the limit
of larged. It is found that the undoped system is an ordered antiferromagnet, and that the doped system phase
separates into a hole-free antiferromagnetic phase and a hole-rich phase. The latter is electrdn-#eaiid
is weakly metallic(and typically superconductingf J<4t. The resulting phase diagram is qualitatively
similar to the one previously derived fdr=2 by a combination of analytic and numerical methods. Domain-
wall (or stripe phases form in the presence of weak Coulomb interactions, with periodicity determined by the
hole concentration and the relative strength of the exchange and Coulomb interactions. These phases reflect the
properties of the hole-rich phase in the absence of Coulomb interactions, and, depending on the J/ajue of
may be either insulating or metallice., an “electron smectic). [S0163-182@08)00924-2

In this paper, the zero-temperature properties ofttde  van Dongef on the smalld limit of the Hubbard model on
model of a doped antiferromagnet onl-a@imensional hyper- a hypercubic lattice which found, as we do, that the weakly
cubic lattice are evaluated using a systematic expansion iloped antiferromagnetic phase is unstable to phase separa-
powers of 1d. For each property of interest the leading be-tion, even if the parameters are scaled J/t=4t/U
havior in the larged limit is computed, and in some cases, ~1//d.
corrections up to order d7 are obtained. These results are ~ Throughout this paper, units are chosen such that the lat-
obtained by breaking the full Hamiltonian into an unper- tice constanti and Boltzmann’s constant are all equal to
turbed pieceH, and a perturbatiof; and then reorganizing 9Ne-
conventional perturbation theory in powershf into a 14
expansion. Of course the partition of the Hamiltonian may be
chosen for calculational convenience, since it does not affect
the results. The convergence of this expansion will not be A. Results in large dimension

addressed. Our principal result is the global zero-temperature phase

Our procedure differs from the extensive recent work ONgiagram as a function af/t and hole concentration, in the
the related problem of the Hubbard and Falicov-Kimball|imit of Jarge d, as shown in Fig. 1. It is immediately clear
models in large dimensidrin the way the large dimension that in most of the phase diagram, the undogediered
limit is taken. First of all, we do not assume that the ratib  antiferromagnetic phase coexists with a hole-rich phase. For
of the exchange integral and the hopping amplitudeis  J/t>4, the hole-rich phase is electron free; otherwise it con-
parametrically small ad— . The previous studies assumed tains an exponentially small but nonvanishing concentration
thatt is proportional to 1yd so that, wherJ is expressed in  of electrons. In the intermediate-coupling regimes X't
terms of the on-site interactiot, it follows that J/t <4, the residual attractionJ] between electrons is great
=4t/U~1/{/d. (The phase diagram will be studied for para- €nough to overcome the hard-core repulsion, and leads to a
metrically small values ad/t in Sec. VIII, but our results are  BCS instability of the dilute metal, producing arwvave su-
less complete in this case, because of the difficulty of conperconducting state at exponentially low-energy scales. At
trolling perturbation theory in this limit.Secondly, the hy- smaller values od/t, the net interaction between electrons is
percubic lattice is bipartite, i.e., it can be broken into tworepulsive. This implies that the system either remains metal-
sublattices, which we label “black” and “red,” such that lic down to zero temperature or exhibits higher-angular-
the Hamiltonian has interactions only between sites on difmomentum pairingvia the Kohn-Luttinger mechanisfn.
ferent sublattices. This favors the classicakeNstate, which A peculiarity of the phase diagram in Fig. 1 is that the
has a uniaxial magnetization with opposite sign on the twdoundary of the two-phase region intersects ite=0 axis
sublattices. By contrast, earlier studies, which were primarilyat a nonzero value of. This is not likely to be correct in any
concerned with the Mott transition and possible non-Fermifinite dimension. For smak and large but finite dimension,
liquid states of the Hubbard model, assumed a nonbipartitese expect that in the limi)/t—0, the ground state is a
lattice which frustrates the Néstate. For both reasons, this ferromagnetic Fermi liquid, and hence the model does not
previous work does not shed much light on the behavior ophase separate. In Sec. VI, we discuss the behavior of the
doped antiferromagnets. A notable exception is the work ofmodel forJ/t parametrically smallj/t~1/\/d. Here the 1d

. SUMMARY OF RESULTS
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Y,

1 i a hole moves in the antiferromagnetic background, it may

. . break a number of bonds of orddrat each hop. Conse-
quently, for such processeghe physics is exchange domi-
0.8 | g nated for larged and it amounts to an expansion in powers of
t/J. This is true of the motion of one or two holes and of
0.6 L 1 domain-wall fluctuations in which holes hop into the envi-
ronment. However the questions of phase separation,

| | domain-wall phase equilibrium, and superconductivity at low
0.4 TWO-PHASE electron concentration are not subject to this limitation.

The ensuing discussion will be organized by order of in-
0.2 1 i creasing hole concentration. To leading order id e
states of minimum energy of a single hole lie precisely on
the magnetic Brillouin zone which also is the Fermi surface

2 4 6 Ih of the noninteracting system with a half-filled band. The
massive degeneracy of these low-energy hole states is lifted
FIG. 1. Phase diagram of thie] model in the limitd—oo: Here by terms of©(1/d%), and it is found that the absolute mini-

x is the hole concentration (1x is the electron concentratiprnThe - . .

S e : mum occurs ak=(7/2)(1,1,], . . .) together with points re-
phase boundary is given by E@53), artificially settingd=2. lated by the oin(th ro)é slmme>tr gMoreover pas deduced
“Two-phase” labels the two-phase region, where a uniform density 1 by P group symmetry. .

previously by Trugmahin studies of two holes in a two-

phase is thermodynamically unstable, “SC” labels a region off ) . . .
s-wave superconductivity, and “M” labels a region of metallic dimensional antiferromagnet, we find that propagation of

behavior with repulsive interactions, which presumably has an uiPairs of holes is no less frustrated than is the propagation of
tralow temperature superconducting instability due to the Kohn2 Single hole, because of a subtle effect of Fermi statistics.

Luttinger effect(Ref. 4. There is, however, an effective attractieril/d between two
holes due to the fact that two nearest-neighbor holes break

expansion is slightly more difficult to control, so our results,ON€ €SS antiferromagnetic bond than two far-separated
summarized in Fig. 2, are incomplete. The resulting conjech0les; this attraction always leads to a two-hole bound state.
tural phase diagram for large but finiteembodies all the An interesting metastable state is a charged magnetic do-
insights gained from studying thé—o limit, but corrects M&in wall (i.e., gd—l dimensional hypersur'face with finite
the unphysical features of the phase diagram in Fig. 1.  holé concentration and suppressed magnetic prifée have

We have also studied the behavior of one or two dopedound that the most stable domain wall has an electron den-
holes and the character of charged domain walls in the antSity Which is, to leading order in @/ equal to that of the
ferromagnet. It will be seen that the latter are stabilized by d'0/e-rich phase which can exist in equilibrium with the an-
long-range Coulomb interaction. These studies bring out afiférromagnet. Thus domain walls can be viewed as a form of

important characteristic of our largbexpansion. Whenever 0@l phase separation. Also the domain-wall configuration
with the lowest surface tensiaie., energy per unit hyper-

1 area of wall is the “vertical” site-centereds (antiphasg
X ' i ' ' ' ' ' discommensuration in the antiferromagnetic order; i.e., it is
I M parallel to a single nearest-neighbor vector and odd under
0.8 I reflection through a site-centered vertical hyperplane.
| We have considered the effect of weak, long-range Cou-
0.6 . lomb interactions as a perturbation. While this study is not
/ exhaustive, we conclude that, for a substantial range of pa-
04| / i rameters, the ground state consists of a periodically ordered
-/ array of optimal domain walls of the sort described above,
02 L i especially wherx is small but not too small. In this range of
F TWO-PHASE X, the ground state is insulating fdft>4, and metallic for
, , , . , , , J/t<4. The latter phase is an “electron-smecficivhich
exhibits crystalline order in one direction and liquidlike be-
1 2 3 J\/a/t 4 havior in the transversed(- 1) directions. The liquid fea-
tures are associated primarily with the motion of electrons
along the domain wall, and they may be metallic or con-
densed into a superconducting state.

We have argued previously that the competition between
line would be exponentially close to the top of the figure, but we local tendency to phase separation in & (_joped antiferromag-
have drawn it, as in Fig. 1, at a position obtained by settind in net and the Iong-range Co_momb rgpulsmn between holgs
the larged expression. The boundary of the fully polarized ferro- Produces a large variety of intermediate scale structures, in-
magnetic metallic phas¢abeled “F”) is drawn in accord with the ~ cluding arrays of domain walls, which are significant fea-

larged expression in Eq(75). There might be other, lower-energy tures of doped antife.rrog"'agnﬂs that we have called “frus-
phases,(e.g., high-density stripe phagethat could occur below trated phase separatiori:* However, these phenomena have

these two phase boundaries, in the region marked “two-phase,not previously been derived from a microscopimgnetic
especially close to the point of intersection. model® It is particularly striking that, in the appropriate

FIG. 2. Conjectured phase diagram of thd model for large
but finite d: This figure should be viewed as a blowup of the small
J/t portion of Fig. 1. The horizontal line represents the snial
extension of the phase boundary in Fig. 1; in fact, in ladgehis
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TABLE I. Comparison of the results of exact numerical studies 1 ; , ,
(Ref. 1) (the row labeled “exact} on the two-dimensional spin- X . s-SC
1/2 Heisenberg antiferromagnet with the perturbative results in g
powers of 1d derived in the present papékVe have been unable
to find corresponding “exact” three-dimensional resulfEhe di- 0.6
mension is indicated by the arguments of the computed quantities. [
The rows labeled “upper” and “lower” give the rigorous upper
and lower bounds on the energies obtained in the text. The approxi- 041
mate results are obtained by settigeeJ, /J,=1, V=0, andd R
=2 or 3 in the series expansion, evaluated to the stated order. All 2 F
energies are measured in unitsJtl, and the magnetizatiom is :
quoted in units in whiclgug=1, whereug is the Bohr magneton.

TWO-PHASE

Ear(2) m(2) Ear(3) m(3) Eo-1eg2) 0.5 1 1.5 2 2.5 3

In
d° -0.5 05 -075 05 -0.25 /
d-?! -0.625 0.4375 -0.875 0.4583 -0.5 FIG. 3. Zero-temperature phase diagram of the two-dimensional
d—? -0.6563 0.4023 -0.8958 0.4427 -0.5625 t-J model, deduced from numerical studies of finite-size systems
d-3 -0.6631 -0.8989 -0.5664 with up to 60 electrons, as well as from various analytic results.
q-4 -0.6647 -0.8993 05713 This figure is abstracted from Hellberg and Manous&Risf. 14.
Exact -0.669 0.307 -0.578®Ref. 12 numerical or analytic results in two and three dimensions.
Upper 0.5 0.75 -0.375 Table | gives a quantitative comparison between thieek-
Lower  -0.75 1.0 0.625 pansion and well-established numerical results for the un-

doped system, i.e., for the spin-1/2 Heisenberg antiferromag-
net. It can be seen that the ground-state energy can be

range of parameters, charge- and spin-density wave ord@ptained from the low-order expansion in powers af d

coexist with metallic, and even superconducting behavior. 0-6% accuracy or better. By carrying the series to higher
order, and possibly doing a Padealysis of the series, much

improved accuracy for all physical quantities could be ex-
pected. In Sec. Xl comparison will be made between numeri-
Larged is, of course, only of academic interest; we arecal results and the results of perturbation theory about the
interested in the physical dimensiork=1, 2, and 3. The Ising limit (Table ).
properties of the one-dimensional electron gaBEG) are Qualitative comparisons can be made with the phase dia-
well understoot by now, and exhibit behavior that is quite gram of the two-dimensionat] model which has been de-
dimension specific. Moreover, for most of the conceivableduced from combined analytic and numertéaf studies.
ordered states, the lower critical dimension for long-rangerigure 3, abstracted from the work of Hellberg and
order at zero temperature is one, so the 1DEG is not likely tdanousakis;* shows the phase diagram deduced from nu-
be well understood in terms of adiabatic continuity from merical studies of systems with up to 60 electrons. As in
large dimension. However, long-range order at zero temperdarge d, there is no thermodynamically stable zero-
ture is quite robust in both two and three dimensions, sdaemperature phase with dilute holes for aiy. Indeed, aside
there is every reason to expect that a ®xpansion will  from the behavior of the boundary of the two-phase region at
capture the essential physics of many of the zero-temperatuseery smallJ/t, the phase diagrams in Figs. 1 and 3 are simi-
thermodynamic states. lar. As suggested above, when the pathologies of the formal
To test this conjecture, we would like to make both quali-d— limit are removed by taking into account the new pro-
tative and quantitative comparisons between the results afesses that become important at parametetrically small val-
the larged theory and any available exact, or well-controlled ues ofJ/t~d =2 one obtains for large but finit the phase

B. How large ared=2 and d=3?

TABLE II. Comparison of the results of exact numerical studf#ee row labeled “exact) on the
two-dimensional spin-1/2 Heisenberg antiferromagnet, with the perturbative results in powers] pfJ,
derived in the present paper. The dimension is indicated by the arguments of the computed quantities. The
approximate results are obtained by settyrgl, V=0, andd=2 or 3 in the series expansion, evaluated to
the stated order. All energies are measured in unitd/df and the magnetizatiom is quoted in units in
which gug=1, whereug is the Bohr magneton.

Eac(2) m(2) Ear(3) m(3) Ez-1eg(2)
y° -0.5 0.5 -0.75 0.5 -0.375
y2 -0.6667 0.3889 -0.9 0.44 -0.5625
y4 -0.6657 0.3711 -0.8995 0.4360 -0.5729

Exact -0.669(Ref. 11 0.307(Ref. 1] -0.5780(Ref. 12
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diagram shown in Fig. 2, which is topologically equivalent to scopic two-dimensional calculations to compare with these
Fig. 3. (Of course, ind=2, parametrically small values of results, so we compare them with experiments on doped
J/t are not all that small, so there is no reason to expecantiferromagnet§9

guantitative agreement with the largeresults. The critical

value of J/t=Y_ at which the phase-coexistence line devi- C. Rigorous results

_q iddy _ L :
ates fromx=1 is'* Y;=3.4367 ind=2, and is rather well In addition to our perturbative results in powers ofi 1/
approximated by the valu¥.—4 asd—c=. However, the e have obtained rigorous upper and lower bounds on the
slope of the phase coexistence linedir 2 is much steeper ground-state energy of the undoped system. These bounds,

than would be deduced from the lardetheory) Similar  which are also quoted in Table I, are shown to converge in
detailed information on the three-dimensiotal model is  the limit d— .

not available at this time, although arguments presented
h}th.(ertd suggest that the phase diagram is qualitativelyp_ Relation to experimental results on doped antiferromagnets
similar to that ind=2, consistent with the expectations from in quasi-two and three dimensions

the 1H expansion. B th | ¢ antf i
Our calculation of the spectrum of one hole in an antifer-, y now there are many exampies ol antiterromagnetic

. . ipsulators that can be chemically doped. One prominent fea-
romagnet ma}g be compared to the_ numenca[ calculations Q[ﬂre of these materials is the occurrence of high-temperature
Dagottoet al.” on d=2 systems with 1816 sites and/t

superconductivity, a phenomenon for which the present re-

=0.4. They found that the one-hole spectrum is well repreg i provide littledirect insight?! However various spin-

sented by the two-dimensional version of the expression inq charge-ordered states, as well as “nearly ordered” fluc-
Eq. (38), confirming the qualitative accuracy of the larde  tating versions of such structures, have been observed in
expression. However the values of the parameters obtaingflese systemi&?3by direct structural probes, especially neu-
to leading order in I are quantitatively quite far from the tron scattering. Two concrete, and well studied examples
exact results, and this discrepancy is made worse by the irof this are the quasi-two-dimensional perovskites
clusion of higher-order terms. This is not unexpected in viewLa,_,Sr,NiO, and Lg ¢_,Nd,Sr,CuQ,, in both of which the

of the fact that largel drives the motion of a single hole into doped hole concentration is equal to the Sr concentration
the exchange-dominated limit. In particular, it is clear fromThe undoped parent compoun@sith x=0) are antiferro-

Eq. (37) that the larged expansion gives a negative value for magnetic insulators with spiS=1 for the nickelates an8

the bandwidtiW in d=2, unless]>0.93. Thus it is essen- =1/2 for the cuprates. In both cases, upon doping, the sys-
tial to compare the largd-expansion to numerical results at tem form$*?3 a “stripe” phase, in which the doped holes
large J/t. Specifically, from Eq(36) with y=1, the band- are concentrated in antiphase domain walls in the antiferro-
width for d=2 is given bydW/t=2.12%/J—1.83(/J)3. It magnetic order. At present it is not known whether the do-
would be interesting to compare this result with numericaMain walls are site or bond centered in genefét. higher
calculations for largel/t extrapolated to the thermodynamic 9oPing concentration in the nickelates, there is strong evi-

limit. Martinez and Horsclf have found that an approximate Qence that both types of domain wall coex_ist due to i”t?rac'
treatment of the motion of a single hole give§V/t= 2t/ tions between the wafld) However, there is a crucial dif-

for large J/t, which agrees very well with our largiresult. fgrence between Fhe domain walls in the t.WO materials: In th?
: L ; ; : . nickelates, there is one doped hole per site along the domain
Via a variational calculation, Boninsegni and Manousdkis

. = ) L - walls, and the doped system is, correspondingly, insulating.
find dW/t=0.59+0.15 in the thermoijsynamm limit fod =2 |1, the cuprate, the hole concentration along the domain wall
andJ/t=5, while Eq.(36) gives 0.41:

X i i is roughly one doped hole per two sites along the domain
Finally, we can extrapolate to two dlmenspns the characya|l, and the system is correspondingly metallic, and even
ter of the ordered arrays of charged domain walls at |0Wsuperconducting, despite the presence of almost static
doping concentration and weak Coulomb interaction. Docharge- and spin-density wave ordéFhis latter behavior is
main walls in two dimensions are one-dimensioflaies) very suggestive evidence of an electron-smectic pﬁ)abfe
and such ordered arrays are known as “stripe phases.” Diaddition, the domain walls are diagonal in the nickeftes
rectly extrapolating the optimal large dimensional domain-and vertical in the cupratés:2®

wall structures tod=2, we would expect the stripes to be  We feel that the occurrence of charged stripes in lightly
site-centered, vertical, antiphase domain walls in the antiferdoped antiferromagnets, the fact that these stripes are an-
romagnetic order, and to be metal(end possibly supercon- tiphase domain walls in the antiferromagnetic order, and that
ducting for J/t<Y, and insulating ford/t>Y,. In particu- they can be metallic or insulating, depending on the ratio of
lar, if we extrapolate the leading-order expression for thel/t, are physically robust features of the largetheory
electron density in the hole-rich phase, Esfl), tod=2,and  which we expect to applynutatis mutandisn d=2. How-
then evaluate it fot>J, we find that such stripes should ever, the preference for vertical versus diagonal stripes, and
have approximately 0.31 doped holes per site along thsite-centered versus bond-centered stripes is likely to depend
stripe, and are thus metallic. Transverse to the stripe dire@n microscopic details, even in large dimensions. Of more
tion, such a phase is a generalized charge and spin-densipyofound importance is the fact that, while in large dimen-
wave state, in which the period of the charge density wave isions the charged domain walls always crystallize at low
half that of the spin-density wavé However, because of the temperature into an ordered density wave, in low dimen-
electronic motion along the stripe, this phase is actually arsions, especially in two dimensions, there is the very real
electron smecti€ Unfortunately, there are no detailed micro- possibility that the domain walls will be quantum
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disordered”’"?*°In such a melted state, which might be ei- where the sum is over all sites on the black sublatticetdnd
ther fully disordered(isotropig or still retain orientational is the exchange interactions between gitand its nearest
order (“electron nematic’), the sort of charge and spin- neighbors(which are necessarily on the red sublaiticEhe
ordered states that are characteristic of the latgtheory ~ HamiltoniansH; are readily diagonalized, but not simulta-
occur as local correlations in the fluctuation spectrum; a mineously since they do not commute with each other. None-
croscopic electronic theory of such quantum disorderedheless, the sum of the ground-state energied afives the

states is not available at present. lower boundEqe= — (1+d~1)J/4+V for the ground-state
energy per site.
Il. THE MODEL These results, combined, prove that the ground-state en-

) ) , . ergy per siteE ¢ of the Heisenberg model approaches that of
The model we consider is the straightforward generalizayhe classical Nel state in the limit of infinite dimension,

tion of the usuat-J model(or t-J-V modef®):
— (B[ 1+ Ud]<Epe—V=—(1/4). ()

1 - t '
H=5 > §-§+vnn}-5 X {cl,0,+Hel, _ ,
(i.i) (i,j),o B. Perturbative expression for the ground-state energy

1) and sublattice magnetization

whereéi=Egyo,c;‘050’g,cilg, is the spin of the electron on We now embark on the derivation of results in a system-
sitei, nj=3,¢! c; , is the number of an electron on site ~ atic expansion in powers of d/ For this purpose, we will

¢!, creates an electron withzacomponent of spin equal to consider the Heisenberg model as the isotropic limit of a

o= +1/2, ¢ are the Pauli matrices, there is a constraint of noHelsgnberg-IS|ng moplel. To begin with, we use Rayl_elgh-

double occupancy of any site, _Schrajmger perturbation theory tq evaluate the propem_es of
interest in powers of thXY coupling, and then reorganize

n,=0,1, (2)  this perturbation theory in powers ofdl/Thus, we take as

our unperturbed Hamiltonian the Ising piece of the interac-

and (i,j) signifies nearest-neighbor sites on thetjon,

d-dimensional hypercubic lattice. In comparing results of

different calculations, it is important to note that there is 1 sz

more than one definition of thet-J model. Most HO:H UED [3-S7S/+Vnin;], ®)

commonly**#“the t-J model” is defined as in Eq1) with o

V= —J/4, but without the prefactor of &/ Where it can be and treat thexy piece,

done readily, we will quote results for arbitavy but where 3

this leads to complications, we will, for simplicity, analyze le_i > [S'S'+99], (6)

only the canonical cas¥= —J/4. The additional factor of d @) : :

1/d is included so that the ground-state energy density reas g perturbation.

mains finite in thed— oo limit; thus, in making a comparison The ground state ofi, is the (twofold degenerateNeel
with previous results on the=2 t-J model, all energies gtate H, has the effect of flipping pairs of spins, which be-

computed here should be multiplied by=2. cause of the large coordination in high dimensions means
that the intermediate states have energies that are propor-
lll. THE UNDOPED ANTIFERROMAGNET tional to d. We have evaluated the perturbative expression

The undoped system has one electron per site so that ﬂior the ground-state energy per sk, and the ground-

lectron hooping termti has no effect. and th e i fate sublattice magnetizatiom to fourth order iny
electron hopping termt] has no effect, a € system IS =J,/J,, but it would be straightforwardusing modern

manifestly insulating; the only remaining degrees of freedorrE: : : -
4 . . - .. methods of high-temperature series expansitm extend
are described by a spin-1/2 Heisenberg antiferromagnet wit ese results to higher order. The results are

exchange coupling.

J y? y4(2d—3) .
A. Rigorous bounds Ear=V-— 4 1+ (2d—1) - 4(2d— 1)3(4d—3)+0(y )
It is possible to obtain upper and lower bounds on the (7)
ground-state energy of the spin-1/2 Heisenberg model which,q
approach each other in the largdimit. An upper bound is
obtained by calculating the variational energy of the &\e 1 ) d
state, which has alternating up and down spins on alternate M= 5{1—)/ (2d—1)2
sites, and gives a ground-state energy per site@f,=
—J/4+V. ,d[32d*—88d°+ 162dz—99d+30]i 6
A lower bound for the ground-state energy can be Y T d-D%4d—3)2d—1) ).
obtained as follows: We express the full Hamiltonian as a
sum of pieces, ®
It is clear that successive powersyobring additional pow-
H= H;, 3) ers of 14 from the additional energy denominators, as prom-

j <Black ised, so that the)(y®) terms are actuallyO(y®/d®) and
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O(y®/d®) for the energy and magnetization, respectively.equivalently, neak= 7= (7, ...)), all terms in the

Reorganizing these expressions in powers dfyiélds Fourier transform add in phase, sp; must be computed to
5 5 ) ) infinite order. o
ooy Yy Y (8—y9) Of course the point is that the low-energy Goldstone
AF 4 2d ' 4d? 64d° modes have exceedingly small phase space in large dimen-
) ) sion, although they always dominate the temperature depen-
y“(16—3y~) +O(1/d5) 0 dence of thermodynamic quantities at low enough tempera-
256d% ture and the asymptotic decay of correlation functions at
large enough distances. Thus the Goldstone modes are en-
and tirely unimportant in high dimensions, except for physical
1 v2 yA(8+y?) quantities that strongly accentuate the lowest energy excita-
m=_1- > —— >+ 0(1d%|. (109  tons. o
2" 4d 3 The way to study the Goldstone behavior is in terms of a

; - ; in-wave expansion, again suitably reinterpreted in terms of
The appropriate expressions for the Heisenberg model ca?rfe 14 expansion. We thus start by considering the Spin-

now be obtained by taking the limyt— 1. Heisenberg antiferromagnet id dimensions using the

] standard? Holstein-Primakoff bosons to obtain the spin-
C. Goldstone modes and the long-wavelength physics

+0

wave spectrum in powers of 3/We will confine ourselves,
Because the N state involves a broken continuous sym- here, to the lowest-order theory, as it adequately illustrates
metry, we know that there must exist a gapless Goldstonthe point. The sublattice magnetization is tt&is the clas-
mode, the magnon. In the presence of Ising anisotropy, theical Neel state, but receives a correction of or@&rfrom
magnon is massive, and is perturbatively related to the singlspin-wave fluctuations as
spin flip. Thus, we could imagine using the same decompo-
sition of the Hamiltonian into an Ising ardlY piece to com- 1 dk [ 1 1
pute the magnon spectrum perturbatively, and then reanalyze m:g{ 14+ — < 1- _2) ] 7
the expression in terms of thedléxpansion. This is imprac- 2SJ) (2m) [ V1—2(K) S
tical, but it is instructive to see why. (12)

In Oth order(i.e., in the Ising mode] there is a set oN/2
degenerate excited states with excitation energy,/2 and  here the integral ovek is over the first Brillouin zone,
S,=—1 obtained by flipping a spin on the black sublattice,
and there is a complementary set of excited states ijth d
=+ 1 obtained by flipping a_spin on the red suk_)latt_ice. These y(l2)=(d)‘12 cogk,] (13)
states resolve themselves into the two polarizations of the a=1
magnon band upon performing degenerate perturbation
theory in powers ofy=J, /J,. The results of degenerate iS the normalized structure factor, and the spin-wave energy
perturbation theory can be summarized in terms of an effedS
tive Hamiltonian,

€mad K)=JISV[1—y2(K) ][1+O(1/9)]. (14)
Hefl= > 7blb;, (12)
1&]=black Expanding the integrand in powers gfand employing

where bJ-Jr creates a spin flip on sit¢ and obeys boson

commutation _relations,[bi ,bf]=5ij . To be concrete, f dky2"(K)/(27r)%= (2n)1/[ (4d)"n!], (15)
we have considered the magnon wib= —1, so we take

the Hamiltonian to operate in the 1 spin-flip sector,
Ej=b|ackb;rbj =1. The effective Hamiltonian can be solved by
Fourier transform to give a magnon energ%ag(ﬁ) 1
:2j:b|ackjo,jexr[i|2 . Iij]. If we were actually interested in mzs( 1-— >3
the case in which there was substantial Ising anisotropy, we

could simply computef; ; to the desired order, sinceiifand

j aren steps apart on the latticgj; ;~J,[y/d]", and hence
for smally, H®" is short ranged. It would also seem that the . . ! .
same logic would justify the self-same expansion for ladge expression agrees \.N'th the earlier result_ of perturbation
and indeed(as is implicit in the discussion of the ground- theory ny, in tt]e I|m|ty.=1, as, of course, I mus.t.

state energythis is crudely true. However, even though; For k near O (or equivalently, nearr), the Spin-wave
falls rapidly withn, the number ofith “Manhattan” neigh-  spectrum(for S=1/2) can be expanded in powers |&f to
bors grows just as rapidly, i.e., ab'. For nonzero wave give the usual linear dispersion of the Goldstone mode with
vector, this does not matter, as the far neighbors contribute tgpin-wave velocity

€mag With rapidly varying phases, and so the long-range tails

of J; j are unimportant. However, foe very neark=0 (or, c=(J/d)vd/i2[1+0O(1d)]. 17

we obtain

1

F"‘O

1
@) ] . (16)

Clearly, in the limitS=1/2, the spin-wave expansion can be
re-expressed as an expansion in powers df ideed this

! O
E"r‘
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We can also compute the transverse spin-spin correlatiog, we define as the unperturbed Hamiltonidp, the Ising
function to leading order in & and examine the resulting |imit of the t-J model, withd, =t=0.

expression at large. Using standard results, it is easy to

seé? that
A. The minimal hole with S*=1/2
([S'S'+9/S) There are Al degenerate one-hole ground statesHof
where the factor of 2 is due to the global degeneracy of the
L dk Neel state, and the factor of (which is the number of lattice
=Sé”'Riif (2m) siteg comes from the locations of the empty sitee holg.
a

(Henceforth we focus only on the states in which the mag-
S\ el 7Ry o netization is up on the black sublattic&@hese states are, in
[1+y(]e™ ™+~ y(k)] cogk-R;)) turn, separated into disjoint Hilbert spaces labeled by the
N /1_ yZ(IZ) b conserved quantum number, the tatatomponent of spin,
since a hole on a black sublattice site I$3s- +1/2 and one
1 on the red sublattice haS*=—1/2. For concreteness, we
1+0 5” (18 will focus on theN/2 degenerate states corresponding to a
hole on the black sublattice.

. We now use degenerate perturbation theory to construct
whereR;;=R;—R; . In the largeR limit, this integral can be the effective Hamiltonian of one hole
evaluated by approximating the integrand by its srkadix-

pression, 1 y?(k)~d~ k2, which yields the Goldstone be-

|

X

havior HS™= > ticlei+ X tclg, (22
i& j=black i&j=red
XX | VY d-1)yd/ 1 dili%é-- i . . _
([S'S+S'SH~ST| ——|— TR el i wherec] is the fermionic creation operator for a hole on site
m J, and for Hermiticity, tj;=t;; . Once the effective Hamil-
25 [R.]E-D tonian is computed, its eigenstates and eigenvalues can be
~—|0 gl Rij (199  found by Fourier transform:
Ve R
whereR=|R;;|, Ro=Vd/2me, T is the gamma function, and Q)= texdik. B 23
in the second line we have used Stirling’s formula for large €notd K) j 2ack 0jexH il @3

d. It is easy to see that the integral evaluated above is domi-

nated by values dt*~d?/R?, and since the small approxi-  To begin with, we study the perturbative expressions for the
mation is valid only so long ak?<d, the Goldstone behav- diagonal termey=t;; .

ior is only valid forR>R,, as is suggested by the form of the

result.

The most efficient way to evaluate properties of the sys- €0=—2V+ ﬁ 1+y? 2(d-1) 72 8
tem at low but nonzero temperature is to use theebpan- 2 (2d-1)(4d—-3) ~ (2d—-1)
sion to compute the fully renormalized zero-temperature pa-
rameters that enter the (8 nonlineare model which +O(yH +O(2%) + O(y?2?)
governs the Goldstone modes, namely the spin-wave stiff-
nessps and the transverse uniform susceptibilipg. The J [y2—162%] [y?—327]
susceptibility can readily be computed perturbatively in pow- = —2V+ — 1+ + —+O(1/d3) |,
ers of 15, and the resulting expression reexpressed in pow- 2 4d 16d
ers of 14 as (24)
I PR P L0 1 Lo 1 where z=t/J, andy=J, /J,. The corrections to the hole
X0=43 |+ ad| ~ " 8sd s d’s?) |° self-energy which are independentyoére the famous string

(200  corrections to the hole self-energy, of which the retraceable
_ . paths of Brinkman and Rié&are a subclass.
In terms of this,ps can be computed from the relatitn Next we study the coupling between second “Manhat-
o tan” neighbor sitesnearest-neighbors on the black sublat-
Ps=C"Xo. (1) tice). There are #(d—1) “true second neighbors,” reached
wherec is the spin-wave velocity given in Eq17). by taking a step to the nearest-neighbor site in one direction,
and then a second step in an orthogonal direction, and there
are 2 “straight line” second neighbors reached by taking
two steps in the same direction. Forand j true second
The one-hole problem has a structure that is nominallyneighborst;; =27+ 75,4, Where the factor of 2 in the defi-
like that of the one-magnon problem, but added factors ofiition takes account of the fact that there are two minimal
1/d make the perturbative approach tractable for all values opaths to the true second neighbor. Heres given by

IV. ONE HOLE IN AN ANTIFERROMAGNET
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B 4tyz (6d%—6d%+1) ,Np (528d*—13681°+ 116@*—314d—7)
T d(2d—1)(4d—3) |~ Y3(d=1)(2d—1)(4d—3) Y D, ° 3(2d—1)%(d—1)(4d—3)(6d—5)
+O(y3) + O(24 + O(Z%y)
tyz y\ 5 y 2272 )
_ﬁ(l_Z)—’_R(l_E_E "rO(l/d) , (25)
[
with D,=482d—1)%(3d—2)(4d—3)3%(6d—5)
N,=294 91217 — 1 834 75215+ 5 070 688&1°— 7 924 688i* x(8d—9)(8d—7) (31)
+7 461 2961°— 4 195 85212+ 1 298 748— 170325 ~ and
(26) N;=—176d%+280d%— 108d -2, (32)
and D4=(2d—1)3(4d—3)%(6d—5), (33
D,=96(2d—1)2(d—1)(3d—2)(4d—3)2 and 75,4 is the corresponding Trugman term which is
O(tz°/d°%). Because they are higher order irdlive will
X (6d—5)(8d—9)(8d—7); (27 henceforth ignorerng and 7, relative tor. However, we

) o shall see below that the difference
7 comes from processes in which, in lowest order, the hole

hops twice, followed by a spin exchange which repairs the 4tzy?(3d—2)2 )
resulting damage to the spin order. In addition, there is a 7'~ 7= 3d(d—1)(2d—1)2(4d—3)2[1+ O(y)+0(z%)]
contribution

B 3tzy2[ (13+y)

= -2
3275 . T (39
Tising™ — —1\2 —_2\2(d—
3d(2d—1)%(4d=3)%(d—1) although smaller tham by a factor of 1d, plays a critical
tz° 1 role in determining the band structure of the minimum en-
T 1+O(a> : (28)  ergy hole in an antiferromagnet.

The sign of these terms deserves some comment. Since

which comes from a process in which a hole circles a{he lattice structure defined lty is not bipartite, the sign of

plaquette one and a half times, thus “eating its own string.” he matrix elements is physically significant. In the present

This rocess, i was discovered by T 02, cos S e lesing order connbuonsrioome from
survives even in the Ising limiy=0. However, 75y, is P Y, 9

) . . - is positive.
higher order in powers of d/and so |s_negI|g|bIe, even,when F‘)I'hese expressions may be combined to obtain an expan-
ti‘]' For straight-line second neighborsy =7'+ 7isng  jon for the bandwidthW of a single hole by adding the
where contributions from the different hopping processes. Each hop
contributes a factor 2or 27’ to W, so

. 4tyz [ (d-1) N
N Then, using Eqgs(25) and(29) and expanding in powers of
! -1
+z2D—f’+ O(y3) + Oz + O(22y) d=
3 dw y\| 5yzl vy 2 42
:ty_z 1_X +i 1_X_2_222 +O(1/d2) T—Zyz 1_Z +E 1—5——15 +O( ).
2d° 4] 4d 5 15 ; (36)
(29 This result does not make sense unléés 0 or
where 154d y y
2N 2 _
Z<ZjS 1 4)+1 2}. (37

N,=73 7281°— 41 0881°— 514 5441*+ 1 145 08&° _ . _
Sincez=t/J,, this illustrates the fact that the motion of a

—1016 78412+ 421 2041 — 67 611, (30 single hole is exchange dominated in the ladgexpansion.
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It is important to note that the leading-order expression To estimate the magnitude 6fJ at which ferromagnetic
for 7 contains one more power ofdlthan the corresponding bubbles first appear, we consider a straightforward generali-
matrix element in the effective Hamiltonian for one magnon.zation (to d>2) of the calculation of Emery, Kivelson, and
Indeed, the leading-order behavior of the matrix element&in®®for a hyperspherical ferromagnetic polaron in the large
connecting sites separated byn Zhearest-neighbor steps size limit (where discrete lattice effects can be neglected
(2nth nearest Manhattan neighbpris t,,~tz2""1y"/d®",  We balance the magnetic energy lost in the volume of the
where the factor otz?" 1«t?" comes from the minimum polaron against the zero-point energgomputed in the
number of hops for the hole to propagate this distance, theffective-mass approximatipto localize the hole in the in-
factor of y"«J" reflects the minimum number of spin flips terior of the polaron. This results in a polaron with a radius,
needed to restore the spins to a ground-state configuratidn~[2tm/Aq(V—Eap+3/4)]Y972), whereA, is the area of
following the passage of a hole, the factorof®"~1) comes  the unitd-dimensional hypersphere
from the accompanying energy denominators at this order of
perturbation theory, and one additional factor afl tbmes Ad=2(\/;)d/1“(d/2)~\/m( V2meld)s, (39
from the overall normalization of the Hamiltonian. Because _ . _ o o
of these extra factors in the expression fgr, its contribu- ~ and in the final line, we have used Stirling’s approximation
tions to the hole energy fall rapidly with distance in high for larged; the polaron has spi§*~A4L%d. By definition,
dimensions, where the number oh-tep paths is @(2d the spin of the polaron must be substantially greater than 1,
_1)2n—l7 and so the number ofh Manhattan neighbors which means that>d?J. We conclude that in the Iargé-

can grow no faster than (32". Thus, the longer range limit, the low-energy hole branch is always the nai&,
pieces oft;; can be neglected for any value Bfin large =1/2 vacancy state, and that local ferromagnetism is never a
enough di%ension. relevant piece of the one-hole physics.

The effective Hamiltonian obtained by retaining only
terms out to second Manhattan neighbors is given by V. EFFECTIVE INTERACTIONS BETWEEN TWO HOLES

Broadly speaking, the effective interactions between two
€enoid K) = €0—2d (7' — 1)+ (2d)2792(K) holes are of two kinds, “potential,” which are induced by
distortions in the antiferromagnetic order, and “dynamic,”
which minimize the zero-point kinetic energy of a hole.

At long distances, the effective potential of interaction
can be computed by considering change in the magnetic
Hamiltonian induced by two static holes at lattice sites 0 and

d
+4(7 —7) Zl coS[k,]. (38)

If we ignore the small difference,7(— 7), then the mini-
mum energy hole states are located ondhel dimensional

hypersurfacey(lZ)zO; since the band structure for the non- 0 (0)
interacting tight-binding model ig;ee= — 2t y(k), and that H,=— —[2 S-S+ S-S (40)
model is, in turn, particle-hole symmetric, this hypersurface iy k

is precisely the Fermi surface of the half-filled band in the

absence of interactions. With higher-order terms in powergvh_ereﬁj(i) signifies the sum over the nearest-neighbor sites
of 1/d (which produce a nonzero value of'(— 7)>0) the  ©Of i. Then, on integrating out the magnetic degrees of free-

minimum energy of a single hole occurs ket (1/2)7 and dom, we obtain
the 2—1 symmetry-related points.

We emphasize that, although we have treated the effects
of t perturbatively, we have not made a smalipproxima-
tion. The present results are valid for arbitraty, so long as

(i) (0)
VAR =~ [ S 3 (T8 §0~(§ 8!

it is not parametrically largéi.e., so long ag<dJ). None- X[So- S—(So- SN+, (41
theless, because each hop of the hole may b¢¥all bonds,
the larged limit is exchange dominated. where- - - are higher-order terms in powers &f which are

also of shorter range as a function|8|, t is the imaginary

time, andT is the imaginary-time ordering operator. It is

straightforward® to determine from linear spin-wave theory
In low dimensions, and fot>J, it is believed that a that

single hole in an antiferromagnet produces a ferromagnetic

bubble in its vicinity, or, more precisely, that there is a series veffl /R(2d-1) (42)

of level crossings as a function ofJ at which the totalz

component? of the spin of the ground state for a single hole which is a short-range potential in the sense that the integral

state steadily increases. However, in the ladgkmit, the  over space ofVe| is noninfinite in all dimensions greater

antiferromagnetic energy always dominates unteisspara- thand=1. (The integral over space of°" itself is easily

metrically larger thanJ, i.e., unlesst~d*J, wherex is a  seen to be (.Moreover, the long-distance tails o™ de-

positive exponentiwhich we will estimate beloyv Such crease in importance akincreases. For this reason, we will

parametrically large values are beyond the scope of thi@gnore the power-law tails o¥®™ and simply consider its

present analysis. dominant, short-distance pieces.

B. Magnetic polarons with larger spin
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The nearest-neighbor interaction between two holesibited by antiferromagnetic order, pair motion appears to be
(which is certainly attractive in the canonical cadés entirely unfrustrated. It was suggested that this might indi-
—J/4) can readily be computed from perturbation theory incate a novelnonpotentigl source of an attraction between
powers ofy=J, /J,: holes which could be the mechanism of high-temperature

v 3 v 3 superconductivity. At first sight, the fact tshélteff~d‘2,
off n N z I z 3 while the single-particle hopping term is-d™ >, appears to

VEe) =G ggli TOII= g~ ggli+ O], support the validity of this idea in largd. However, the
(43)  fallacy of this argument was revealed in the work of
Trugman: who showed that this mode of propagation of the
hole pair was frustrated by a quantum effect which originates
in the fermionic character of the hole. In larde this frus-

There is a considerably weaker interacti@rhich, in fact, is
repulsive between second nearest-neighbor holes:

L Jy2 tration effect is particularly graphic. Pair binding is enhanced
vefie, +e,)= 2d(2d—1)(4d—3) [1+0(y?)] if we ignore single-particle hopping, and diagonalid§".
Of course, any state in which the two holes are farther than
Jy? one lattice site apart are eigenstatesigf, so long as terms
= ool 1+ O0(1d)]. (44 of this range are neglectétecause they are of higher orgler

as in Eq.(46). For the states in which the two holes are
Indeed, to this order, the effective interaction is the same fopearest neighbors${S™ can be block diagonalized by Fourier

all second Manhattan neighboig®™(2e,)=V*f(e;+e,)[1  transform, with the result that there agebands of eigen-

+O(1/d%)]. Clearly, for further Manhattan neighbors, the states labeled by a band index and a Bloch wave vécttir
effective interactions are down by additional powers af. 1/ s straightforward to see that none of these bands disperses

. The I_(inetic terms, in general, generate fairly CorT”O”C"’V[ed(their energies are independentl?)fand thatd— 1 of these
interactions of the form bands have enerdy®®, while the remaining band has energy

uef+ 2T This final band, which feels the effect of pair
Te“=2 Tijk,cichTckc,, (45) propagation, has the highest energy. On the other hand, if the
1kl holes were bosons, this latter band would have enétgfy
where, as beforeg is a fermionic creation operator for a —2T°" which is much closer to what one might have ex-
hole at sitej. However, in larged, it is strongly dominated ~Pected. _ _
by its short-range components, of which the dominant terms It follows from this argument that coherent propagation of

are a potential interaction between nearest-neighbor hole® Pair is not an effective mechanism of pair binding and that
. ) off/ . . the short-range attraction between two holes in an antiferro-
[which renormalizes/¢"(e,)] and a pair-hopping term. In-

- : L . magnet arises from the fact that two nearest-neighbor holes
deed, combining the potential and kinetic terms to leadin . ;
. . o . reak one less antiferromagnetic bond than two far-separated
order in 14, we find a two hole contribution to the effective

Hamiltonian(i.e., the interaction part of the effective Hamil- holes. This interaction is sufficient to produce a two-hole
. o . pal . ; bound state because the one-hole spectrum has an essentially
tonian, of which Eq(22) is the noninteracting piege . . .
degenerate band minimum along tthe 1 dimensional mag-
netic Brillouin zone. As in the Cooper problem, this gives a
HST=Ue> clefeici—To > clcfejc+ 01, constant density of states at low energy and any attractive
(LJ) (Lik) interaction is sufficient to produce a bound state.

(46)
where in the pair-hopping terfi, j k) signifies a set of sites
such that andk are both nearest neighbors jofwhich we VI. FINITE HOLE CONCENTRATION
define to include the case=k), and We have suggest&tf that, in general, a doped antiferro-
v 872 magnet ind=2 will phase separate into a hole-free antifer-
Ueﬁza— ﬁ[lernL oy +0(z% romagnetic region and a hole-rich region. There is now sub-
(d-1)(2d-1) stantial evidence, both numeritat* and analyticat>363"
) 2 that this is the case for thteJ model ind=2. Phase separa-
+0O(y?2%) |= 9 7d 1+ 7+ O(l/d3)} (47)  tion is, of course, a first-order transition, so it must be stud-

ied by comparing the total energy of various candidate ho-
and mogeneous and inhomgeneous states to find the true ground
state at fixed hole density.

o 1Z [ y ) 5 In large dimension, there are many metastable states
T _d(d_l)[lJr 4d-1) +O0(y)+0(z) which are, in a sense, “local” ground states of given char-
acter. While the largeh limit allows us to compute the en-
tz 1 y 2 ergy and character of a given candidate ground state exactly,
T g2 1+ d 1+ 4 +O(1d%) |. (48) it is almost never possible to prove that we have actually

identified the global ground state. Specifically, we have com-
The pair-hopping ternT®" has an interesting history: In puted the energy of various candidate staies discussed
early work on high-temperature superconductivity, it was of-below) and found that, of these, the lowest-energy state is
ten claimed that, whereas the motion of a single hole is inphase separated into an undoped antiferromagnet and a hole-
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rich phase with a very lovelectrondensity, i.e., with hole  of x. Thus, ifEr< — 2t, the only thermodynamically stable

concentration equal to or nearly equal to 1. Moreover, giveryerg-temperature phases of thd model are the undoped
that the interaction between two holes is strongly attractiveyntiferromagnet and the vacuuimo electrons On the other
(of order the hole bandwidjhat short distances, and weakly hand, if Exe>—2t, phase coexistence is possible between
attractive at long distances, we feel that it is extremely unype antiferromagnet and a “metallic’ phase with allowed
Ilke_ly that any dll_ute hoIe-_I|qU|d or hole-crystal phase in the g|actron densitiesh<n,.,, Wheren,. is the electron den-
antiferromagnet is stable in large Below, we show that the _sity at the equilibrium value of.. We shall see shortly that

same instability shows up in a dilute domain-wall_ phase inyqin Egasandn are exponentially small at largk so that to
which the holes are concentrated on an array of widely SePaxponential accuracy

rated domain walls.

What this means is that, under the assumption that we w=Epr. (52
have not overlooked a lower-energy statdich we consider
unlikely), we can obtain a complete and exact understandindf We use the largel expression folE,r, we conclude that
of the zero-temperature phase diagram indhe limit by ~ the metallic state is stable only #<4t[1+O(1/d)], and
Considering the phase coexistence between the undoped dhat if this condition is satisfied, the maximum stable density
tiferromagnet(which we have already characterizeahd a  ©of the metallic phase is
very hole-rich or dilute electron phase. We emphasize that

the physics of phase separation and domain wW&ks. V1)) 2 [ [e(at—3)]° 1
in larged is not exchange dominated because it does not Nmax= m[ At 1+0 d/ (53
involve breaking a large number of bonds.
Notice that this quantity is smallnd hence our approxima-
A. Properties of dilute electrons in larged tions are justifieyl even in the limitt>J, where

We now consider the ground-state properties of dilute gld2
electrons on al-dimensional hypercubic lattice, faf large. nmax—>(2/\/7rd)[—} . (54
Near the bottom of the band, the electron dispersion relation ™

is approximately quadratic, i.es(IZ) ~—2t+tk?/d is a good

approximation so long as each componerﬁiﬁ small com-
pared to 1, or typically, thak?<d. Also in this limit, the
interactions between electrons are weakce they rarely Since the electron density in the metallic state is small,
approach each otherand so can be ignored to first approxi- interaction effects are dominated by pairwise collisions be-
mation. Thus, we will begin by considering the properties oftween electrons. In the triplet channel, there is a nearest-
the noninteracting, quadratically dispersing electron gas$ in neighbor electron-electron repulsion of strength V(4

C. Effective interactions in the metallic state,
and the conditions for superconductivity

2A4 d
n=——

d 1+0

dimensions. For this problem, the Fermi momentum as at+J)/4d, while in the singlet channel there is an infinite,
function of the chemical potential, is ke=\(u+2t)d/t ~ on-site repulsion, and a nearest-neighbor attraction of
for u>—2t, and the corresponding density is strength (4/—3J)/4d. For the canonical choice oY=
—J/4, which we adopt in most of this section for simplicity
ke\9 2 e 1 of notation, the attractive interaction in the singlet channel is
Z) —m( \ 5-g<F a) , (49 simply —J/d. _ _ _ -

We can look for evidence of a simptewave instability
whereA, is given in Eq.(39), a spin-degeneracy factor of 2 of the metallic state in the low-density limit by studying the
has been included, and the final equality uses the large conditions for the existence of a solution to the BCS gap
expression forA,. Note that whenever the conditidf<d  equation. First, consider the unperturb&bninteracting
is satisfied, the electron density is exponentially small forthermal Green function at low, but finite temperature
large d, so our approximations are exponentially accurate.

The energy per site of this system can be computed readily: tanr{é(e(lz)—,u)
. 2
=_ —K2 G(k)= = , 55
Egas —2tn[1—kE/(2d+4)]. (50) (k) e 2] (55)
B. Conditions of thermodynamic equilibrium wheree(k) = — 2t y(k) and y(k) is defined in Eq(13). Now

it is straightforward to show that, in the singlet channel, the
BCS equation for the transition temperatremay be writ-
nfen in terms of the corresponding real-space Green functions

In general, for two phases to be in thermodynamic equi
librium, they must have equal chemical potentials,How-
ever, here, the undoped antiferromagnetic phase is inco
pressible, so that the zero-temperature chemical potential is 1
undetermined. Then the condition for the electron gas to be Go= _2 G(IZ), (56)
in equilibrium with the antiferromagnet is N*2

w=[Ear—Egad w) 1/[1-N(m)], (51) G 2z oK é ) d S (6K
whereEy,sis the ground-state energy per site of the electron N K ( )a:1 costia) =~ tN K )Gk,

gas and is the electron density, both of which are functions (57
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and Because there are no particularly good nesting vectors, we
consider it unlikely that the hole-rich phase is subject to any

d 2 . . . L
2 . d L sort of charge or spin-density wave instability of the hyper-
Go= EE G(k)[ 2 cos(ka)} = 2t2N§|z: (KG(K) spherical Fermi surface in large dimension.

K a=1
(58
theU limit of VII. ONE DOMAIN WALL
as theU —oco limit O

) As mentioned previously, one feature of this ladyeer-
0=(1+UG)(1-JG,/d)+JUGE/2d?, (59 turbation theory is that there are many interesting states
which, if not the global ground state of the system, are at

or, in other words, . : .
least the lowest-energy eigenstates in a restricted sector of

1 G G2 the Hilbert space. In particlar, domain-wall states are inter-
=2 r (60) esting in their own right, although they prove to be of special
J d  2d%G, importance in the presence of long-range Coulomb interac-
. tions.
Since e(k) appears in the numerators Gf; and G,, as First of all, we define a domain wall to beda-1 dimen-

well as in the denominator @&(k), one may expres§,; and  sional hypersurface which cuts the full lattice in two, such
G, in terms ofG, and sums in whicke(k) does not appear that far from the domain wall the system is undoped, and
in the denominator. Now, to find the critical ratio tf) at  hence antiferromagnetically ordered. Since, as we shall see,
which T.—0, note that, forx near the bottom of the band in larged such domain walls are always smodttansverse
(u~—2t), the approximation talﬂli?(e(lz)—,u)IZ]%l can be quantum fluctuations of the position of the domain wall are

. . — suppressed by powers ofd)/ we can characterize such a
used in the various sums, except@. Then Eq.(60) be state by the mean position of the domain wall, its net charge

comes (i.e., the concentration of holes per hyperaraad the phase
1 1 1 shift (if any) suffered by the antiferromagnetic order in
- (61) crossing the domain wall. In addition, since domain walls lie
Jo2t 8t°Gy along lattice symmetry directions in all cases of interest, we

gan classify them by the broken crystal point-group symme-
try. Here we analyze what we believe to be the physically
most important domain walls, but we have not yet carried out
an exhaustive study of other possible domain-wall structures.

Consequently the effective interaction is attractive and th
BCS transition temperature fgrwave pairing is nonzero, so
long as

JIt>2. (62

This result is valid for dilute electrons in any dimension

greater than 1, and is in agreement with earlier results in two A Vvertical domain wall lies perpendicular to a principal
dimensiong3283 Notice that Eq.(61) with tanl{/&’(e(IZ) axis _of t_he hypercub_e_, which we call the axis, and its
—1)/2] set equal to 1 irG, is the condition for a two-hole Iocatlc_m is thus specified by_a single coordlnatg. If the
bound state, but in this ca, is divergent only ird=1 and domain wall preserves r(_aflectlon symmetry relative to a hy-
d=2. Thus, in higher dimensions, the critical valuet  Perplane that is perpendicular to thexis and crosses the

for a two-hole bound state dependsdyrand tends to infinity axis at a IatFice _site(which_ we will takg to'bex=0)', the
asd—soo. domain wall is said to be site centered; if this reflection plane

For J/t<2, the direct pair interaction is repulsive in all passes half-way between two adjacent lattice gitsch we

channels, so there is no solution of the BCS equations. How!ll take to bex=0 andx=1), the domain wall is said to be

ever superconductivity could emerge in a higher angularpond centered. We begin with the case of a vertical, site-

momentum channel by a variant of the Kohn-Luttinger ef_centered domain wall with charge density of one hole per

fect. This sort of instability has been studied extensively inSIt€: 1-€-, one that corresponds to a hypersurface of empty

two dimensions, and could probably be analyzed in much Sites. . .

the same way here. However, as the electron density is any- We thus consider as the unperturbed part of the Hamil-

way exponentially small in largd, and these effects are of tonian, Ho the Ising part of thet-J model witht=0, but

still higher order in the density, they occur at energy scale®0SSiPly with different choices of the Isirgaxis to the right

that are exponentially smaller than the exponentially smalfx>0) and to t_he 'e_f“@<°)_ of th? dom?"” wall. Thehi_l IS

Fermi energy. gll the remaining interactions, including all terms involv-
One can, of course carry through the same analysis fof'9 t-

arbitrary values o¥, in which case, Eq(61) is replaced by The ground state dfl, in the appropriate charge sector is
fourfold degenerate: it has no electrons in the domain wall

3] (one hole per siteand one of the two possible Blestates in
- V> (63 each of the two “halves” of the system. The energy per
domain-wall site(relative to the energy of the uniform, un-
and, in general, there is no superconducting transition itloped Nel stat¢ can now be calculated perturbatively, and
V>3J/4— 2t. Recently, Riera and Dagoffthave shown that it can be seen straightforwardly that the perturbation theory
a sufficiently large value o¥ prevents bound states of pairs is again controlled by large; for instance, from second-
of holes in the two-dimensionatJ model. order perturbation theory we find

A. “Vertical,” site-centered domain wall
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(d+ 1)\)2[ y2(4d%>—3d—2) centered wall: On the one hand, more antiferromagnetic
€vert™ o4 L + (d+1)(2d—1)(4d—3) bonds are broken by the bpnd—centered wa}ll. On the oth_er
hand, only a very small fraction of the states in the electronic

8J,7° band have energy of ordertd®, so even if we ignored the
" [2d—1+cog9d)] T constraint of no double occupancy, and allowed the remain-

ing electrons in the domain wall to minimize the kinetic
J, (2+y?) (y?—64z°) 3 energy part of the Hamiltonian, the gain in kinetic energy
=\t gt T gz o)y, will be higher order in d than the loss of exchange energy.

i Of course, if we were to roughly double the concentration
where 6 is the phase shift of the Neéorder across the do- of holes, then a bond-centered domain wall can be viewed as
main wall. simply two nearest-neighbor site-centered domain walls.

It is clear that to this order in d/ the energy is indepen- This situation will be considered, below, when we consider
dent of §. However, from the perturbative expression, weinteractions between domain walls.
can extract the leading ordérdependence:

2t2 [cog )+ 1] C. Other domain walls, domain-wall kinks, etc.

€verl 6) = Ever ) = J, d? {1+0(1/d)}. There are many other kinds of domain walls. For instance,

(64) one could consider a “diagonal” domain wall, either bond-
,, or site-centered, which is infinitely extendeddr-2 direc-
tions, and lies along a 45° angle relative to the two remain-
ing lattice directions, which we will call X" and “y.” As

Clearly, then, the energy is minimized by an “antiphase
domain wall, with 6=. The preference for an antiphase

domain wall is produced by the transverse fluctuations of th%n example, one could construct a bond-centered diagonal

e o e areneros e paqomain vl bypacing ol hey plane long a i
tions .of an antiphase domain wall is an increase in the surgase” of neargst—nelghbor Slte$ obtaln_ed by first taking a step
f hereas, for any othérthere are regions of in the x direction, t_hen_ a step in _thp direction, and so on.

ace energy, w ' y 9 To zeroth order, this diagonal stripe has the same energy per

impaired spin correlations. Indeed, we know from the solu-hoIe as the vertical, site-centered stripe

tion of the one-dimensional electron gas with repulsive inter- To compare the energies of different sorts of domain
actions that, near half filling, the holes are solitons that ac&valls we imagine finding the state of minimum energy of a
locally like antiphase domain walls in that the magnetic Cor'syste,m of size RIX2N in the x-y plane, and of infinite
relations are shifted byr as one passes a hole, although 0fextent in the remaining— 2 directions. Considering the pro-

course there is no long-range magnetic order in this case. . .
The empty domain %vall \?ve ha\?e been considering is pJection of the problem on the-y plane, we study the pos-

cally stable so long ad/t is sufficiently large §/t>Y, sible ground states of the system witN holes per plane, in

— 4[1+O(1/d)]), but is unstable for smaller values aft. the presence of a strong staggered field on the boundary that

To see this, consider the state in which one electron is tran favors an up spin on the red sublattice on tiesites nearest

. . he lower corner(i.e., for pointsx=0,0<y<N and 0<x
ferred from the surrounding antiferromagnet to the bottom O<N,y=0) and the opposite field, which favors up spins on

the domain-wall band. In first-order degenerate perturbatiorghe black sublattice, on theNt 2 sites which form an upper
theory int, the bottom of the domain-wall band is easily seen‘.cap,, i.e., the pointsx=0N<y<2N, 0=x<2N,y=2N

to bee=—2t(d—1)/d+ ..., i.e., equal to the band bottom ~ o "
of the dilute electron phase to leading order im.1This 1, andx=2N—1N<y<2N. T_hese bounda_ry conditions
force the system to have an antiphase domain wall of length

means that, for the domain wall to be in local equilibrium2N sites (or greatey, but permits it to choose whether to
with the surrounding antiferromagnet, it must have approxi- 9 ’ P

mately(up to higher-order corrections ind)/ the same elec- have a vertical, diagonal, or a piecewise vertical domain wall

tron concentrationn,,,« in Eq. (53), as the hole-rich phase with some concentration of right-angle kinks.
which can exist in equilibrium with the antiferromagnet. It is The kink energy is readily computed perturbatively in

. . . . owers ofy andz, and it also can be reexpressed in powers
in this sense that a domain wall can be viewed as a form o? fy P P

-1.
local phase separation. Since even whlén<1, n,,, is ex- ofd™=
ponentially small, the existence of dilute electrons within the

domain wall whenl/t<Y, does not significantly affect any J,[ y2(4d3—13d?+12d—2)
of the other calculations described above. However it does Ekink:E 4(d—1)(2d—3)(4d—5)
imply that these electrons render the domain wall metallic

and, under appropriate circumstances, superconducting. This, 47°(d—3)

of course, implies a qualitative difference in the electronic d(2d—-3)(d—1)

properties of domain walls for small and larg4.

2 2 2
JZ[ 2, Vo, yPr6er) (i) 5

== et
B. Bond-centered vertical domain wall 8d 2d 4d © d3

If we fix the hole density at onéor approximately one
hole per hypersurface unit cell, as above, it is immediatelywhich is manifestly positive in large. [Here Ey, is the
clear to Oth order in ¥ that a bond-centered domain wall energy per site of thed(—2) dimensional hyperline at which
will have considerably higher surface tension than a sitea site-centered vertical domain wall makes a right-angle
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bend] Similarly, the energy of a zigzag diagonal domain gion of parameters, as wellNote, as mentioned previously,
wall can be compared to the energy of the vertical wall com-our results here are consistent with those obtained using a

puted above: somewhat different approach, for the ladyélubbard model
(Ref. 2)
J(d+1)] dy?
Cdiag™ €vert™ 44" | (4d—3)(2d—3)(2d—1)(d*—1) A. The phase diagram forJdV%/t>1
1622 To begin with, we consider the behavior of the system

+

O(Z%y)+O(y*") + O(z%)

1
@ .

Thus it seems that the vertical domain wall has the lowes
energy in large dimension. However, it is easy to see that this

when J/t~1/\/d is parametrically small, buf/d/t>1 is
still large.

For energies away from the band edge, i.e.,dort/\/d,
(66)  the density of states per spin polarization of the tight-binding
model on the hypercubic lattice in large dimension is readily
nt:omputed by the method of steepest descents:

(@ 1)(2d—-1)

1 2
82+ g )1/—6+ 1272

f— JZ
- 4d°

+0

is a model-dependent result. For example, one can readily p(e)Z(ZW)_lJ dxé*[Jq(2tx/d)]¢
construct models on a “Cu-O" lattié8 rather than a hyper-
cubic lattice in which a diagonal, or bond-centered vertical 1 /d
domain wall has the lower energy. =5V exd - 2d/At?[1+0(e?)].  (67)
D. Interactions between two domain walls From this it is clear that, so long as the electron density is

Two domain walls attract each other at long distance
through the exchange of spin waves, in much the same way . . o i .
9 g P eighbor antiferromagnetic interactionghe density as a

as two static holegSee above.Again, in high dimensions, functi f chemical potentiaf <0) | dil i
we expect this effect to be less important than the short-rangémC ion of chemical potentiaior x=<0) is readily seen to

attraction between domain walls. For instance, to leadin

order, there is an attractive interaction energy per unit hyper- _ 272 2
area between nearest-neighbor vertical site-centered domain N(p) = erfe(ydu™/at") + On(w)%), (68)

walls which to leading and next to leading order is simplywhere erfc is the complementary error function, and the en-
equal to the nearest-neighbor attraction between two holegrgy density is
Eq. (43) above.

ow enough, we can approximately ignore interactions be-
een electrongj.e., the infinite, on-sitd&J and the nearest-

_ 2 2 2
VIII. BEHAVIOR IN LARGE BUT FINITE DIMENSION Egad )=~ mexﬁ_dﬂ 14"+ 0(M(w)?). (69

We have found that, in some instances, the electron ki- _ ) _

netic energyt may play a relatively small role in the physics ~ Thus, there is a regime of parameters; X/t>2/\/d in

in large d, because only states exponentially near the ban#hich the density oélectronsis small(but not exponentially
minimum have energies of ordertd®, while the bulk of the small and interactions between electrons in the “gas” phase
states have energies of ordgr/d. Thus, these states will €an still be _neglected in any total-energy calculation. Under
only come into play whet/J gets to be parametrically large: hese conditions|Eged <|Ea| and 1-n~1, so from Eq.
t/J~\/d, where the largel theory is more difficult to con- (.51)' Itis easy to see that the den_s]ty'of eIe_ctrons in a hole-
trol. In such a regime our results are less complete, and mofdch Phase in thermodynamic equilibrium with the undoped

subject to worries that there could be states we have misseam'fe"omagnet IS
For instance, the perturbative treatment of the one-hole prob-

— 2
lem is no longer well controlled by large: As discussed Mmax™= erfc(J\/H/4t)+(9(nmaX). (70
above, the effective hopping matrix element to theti?
Manhattan neighbor is of ordext/J)?"~%/d®", while the B. The phase diagram for 2>Jd%/t

number of Such nglghbors mcreasesdig. Thus, fort/J WhenJ/t is reduced still further, so that/d/t gets smalll,
~\d, the contribution of far-neighbor hops to the hole en-,, ~ on516aches 1, and it is no longer possible to ignore the
ergy fork near O orm does not decrease with Since this  effects of interactions in the hole-rich phase. In this limit, we
only matters for a very small fraction of one hole states,ose the possibility of quantitatively reliable results based on
while for generic values ok, only the smalln terms are our larged approach. However, for very smallt and den-
important, it is unlikely that this problem leads to any sig- sities near 1, it is reasonable to expect the “electron gas”
nificant changes in the qualitative physics of the dilute-holestate to be ferromagnetic, at least locally. The ferromagnetic
problem. It does, however, mean that we cannot be quite gshase is noninteracting in any dimension whés — J/4,
confident of the completeness of our understanding of theorresponding to the canonical definition of thé@ model. In
problem in this limit, as whet/J is not parametrically large. that case, the equilibrium between the ferromagnetic hole-
Nonetheless, with certain plausible assumptions and soméch phase and the undoped antiferromagnet can be com-
guidance from the results of various studieslin2, we can  puted exactly. Using the largkexpression for the density of
elucidate much of the behavior of thie]l model in this re- states in Eq(67), we obtain the implicit expression fqr,
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w=[Ear— Efenol/[1—n(w)], (7D We define the Coulomb interaction ¢hdimensions by a
, g?eneralized Poisson equation
where the ground-state energy of the ferromagnetic Ferm
as is e s o .
? ~V2p(F) =V -E=(QId)p(r), (76
Eferg= — Lexq—d,uzlmz], (720 whereg(r) is the scalar potentiak(r) is the electric field,
yrd p(r) is the particle density,

the electron density is . . ..
U(r)=—(Q/2d)p(r)¢(r)=dE-E/2Q (77)
N(w)=(1/2[20 () - sgrip)erf JduZ/a?)], (73) _ _ _
is the energy density, arf@ is the effective chargéor back-

and @ is the Heaviside function. We can evaluate this ex-ground dielectric constantvhich determines the strength of
pression in the limit of small\/d/t: the Coulomb interaction. One could, of course, imagine dif-
5 ferent ways of scalin@ in the larged limit. Given that we
t are after the physics of frustrated phase separation, we wish
m= ﬁ In[2t/ ”dJ][1+O(J\/a/t)] (74 {0 take the limit in such a way thdt) macroscopic phase
separation is forbidden buii) for a homogeneous state, the
and long-range part of the Coulomb interaction is unimportant
compared td andJ. This is accomplished by taking the limit
J i h h .
1—nmax=ﬂ[l+O(J\/a/t)]. 75 in such a way tha@ does not depend odh

o . A. An effective model for “frustrated phase separation”
This, finally, corrects the unphysical aspect of the phase

diagram ford— o, in that it implies that the boundary of the I @ previous publication, we considered a two-
two-phase region approaches the zero doping d®is dimensional model which we argued represented the physics
(3Nt (In[2t\7dJ]) Y2 asJ/t—0. This is shown in the of frustrated phase separation at a coarse-grained level. This
phase diagram in Fig. ZNote that, because all interaction M0del is easily generalized to arbitrary dimension:
effects vanish in the ferromagnetic state, the location of the 7
coexistence line between the ferromagnetic Fermi liquid and ,_ _ < (o —1)+(1/2 V(i Mo —o
the undoped antiferromagnet can be computed accurately in <,2” (oi=D)(oj=1)+( );j c(i,j)loi—0o]
any finite dimensiond, for which Er is known!® For d —
=2, for instance, % nq,= B3I/t whereB~0.61) X[oj=0a], (79

For parametrically small/t and larger electron concen-

tration, the nature of the phase diagram in large but finitdV1€r€oi=1 if “site” i is a hole-free region ana; =—1 if
dimension is currently unexplored. site” j is a hole-rich region,7 is a short-ranged “ferro-

magnetic” interaction, which promotes macroscopic phase
separation of the two coexisting phas¥s, is the Coulomb
interaction, suitably defined on the lattice, and

Thet-J model has been widely studied because it is sup-
posed to represent the most important low-energy physics of pl N’lz o
a system of strongly interacting charged patrticles. It is as- T )
sumed that the long-range part of the Coulomb interaction
can be ignored provided it is fairly heavily screened by ais the mean charge per “site.” In this model, we imagined
surrounding dielectric background. But this assumption ighat sites represented small regions which were nonetheless
not valid for a state which is macroscopically inhomoge-large enough that the local state could be described as being
neous. In the presence of Coulomb interactions, we need tone of the two phases that would be in equilibrium with each
do thermodynamics at fixed mean particle density, and thether in the absence of the Coulomb interaction. In the
system must be neutral at long length scales, i.e., phase segaesent large dimensional context, it is possible to derive this
ration is forbidden. In a system with an average electroreffective Hamiltonian microscopically, identifying the sites
concentration ¥n<npa, and a long-range but “weak” in the effective model with the original sites in thd model,
Coulomb interaction in addition to the strong short-rangethe o;=1 state with a site occupied by an electron, the
interactions of theé-J model, we encounter a class of phe- = —1 state with an unoccupied site, agf equal to the
nomena that we have nanfetirustrated phase separation.” nearest-neighbor attraction between two holes, derived in Eq.
Here, the system is homogeneoineutra) on long length  (43) above. This model is insensitive to the fact that the
scales, but inhomogeneous on short length scales, with intehole-rich phase has a nonzero electron concentration for
leaving regions that look locally like the two phases thatJ/t<Y., but since the electron concentration is always ex-
would coexist in the absence of the Coulomb interactions. Iponentially small, this error makes no difference in the ener-
is the purpose of the present section to explore the conseetics and structure of the various phases of frustrated sepa-
guences of frustrated phase separation intthenodel plus ration. Similarly, it ignores the fact that in each disconnected
“weak” long-ranged Coulomb interactions in the limit of region of (hole-fre¢ antiferromagnet, there is a potential
larged. ground-state degeneracy associated with spin-rotational sym-

IX. THE EFFECT OF COULOMB INTERACTIONS

(79
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metry; this might affect the finite-temperature behavior of 127 X
the system, but has no effect on the ground-state phase dia- W= Q 1=x7? (82
gram.

We have studiett the ground-state phase diagram of this Finally, recalling that because the lattice is actually discrete,

model ford=2 (and for V.(r)=Q/r, rather than the true the allowed'values df\/_ are actually'nearest integgr approxi-.
two-dimensional “Coulomb” interactionyC(F)zQ In[r]): mants to this expression, we obtain the approximate condi-

the results there, as well as the results of exact soltftioh tion that widthn>1 stripes are stable for

a largeN, “spherical,” version of the same model, lead to 247 X

the conclusion that in all dimensions, there are a number of 2n+1)=—  ——=>(2n—-1), (83
e - . ( Q (1—-x)? (

ubiquitous characteristics of the ground-state phase diagram

of Eq. (78). Specifically, for very larg&/ 7, the ground state and that width 1 stripes are stable for

is the “Wigner crystal” phase, or in other words, the ground

state of the Coulomb term, itself, which, for<0 is a fully 1= 8J X 84)

d-dimensional crystal of isolated sites with=—1, in a sea -

> V Q (1-x)*
of sites witho= +1; for example, fore=0, the “Wigner . .
crystal” is a state in which one sublattice is occupieddy Of course, for large enoug/.7, the width 1 stripe phase

—"+1 and the other byr— —1. Conversely, foQ/.7 very should give way to the other phases, mentioned above, and

mall the around stat nsist of n f vstri ,eventually at very large values to the Wigner crystal.
sha ' ef ground states co fss t(') a se?ue ce o thS PE" An interesting aspect of this model is that, although it
phases of varying pgno(hs a function o ‘7) orin other only explicitly involves the enumeration of the charge order-
words phases in which the density®f — 1 is a function of

di d ind q fth inid ing (i.e., which sites are occupied and which are unoccu-
one coordinate, and independent of the remain 9‘9 pied, given the fact that there is an energetic preference for

coordinates. In this regime of the phase diagram, for fixed antiphase ordering of the spins across a charged stripe, we
the smallerQ/ 7, the longer the period, as discussed below.can reconstruct the ground-state spin ortlgr to a global
Between the striped phases at sm@ll7 and the Wigner rotation by imposing the constraint that within regions of
crystal phase at larg@/ .7, there typically occur a sequence occupied sites ¢=1), the spins are antiferromagnetically
of more complicated phases that interpolate between the twgrdered and, across unoccupied sites=(— 1), the antifer-
extremes. In two _dimensions, we found that these.phasq%magnetic order suffers a phase shift.(At very small
occupy an exceedingly narrow sliver of the phase diagramg/ 7, where the width of the charged stripe becomes greater

but we do not know how generic this behavior is. than 1, a simple generalization of the above microscopic cal-
culations shows that, in larg the correct ground-state en-
B. The properties of the stripe phases ergy and spin order may be obtained by viewing a thicker

Sstripe as a collection of nearest-neighbor fundamemalth

If we confine ourselves to considerations of stripe phase . N - .
1) stripes and assigning & phase slip per stripg.

then the Hamiltonian in Eq.78) can be reduced to an effec-
tive one-dimensional model by summing over the values of
the Ising spins in thed— 1) dimensions perpendicular to the X. GENERALIZED SPIN LADDERS

modulation direction: There has recently been interest in the properties of spin-

1/2 Heisenberg “ladders” ird=2, where a ladder is effec-
Hastripe= — (j/4d)2 (0;—1)(0j4+1—1) tively a one-dimensional system which has finite width in all
] directions, save one, in which it is infinite. We can readily
apply our analysis to the largikgeneralization of these lad-
+(Q/2d)> li—j |[Ui_;][gj_;]_ (80)  ders. For instance, we consider a generalized “two-leg” lad-
i der, in which the lattice has a width 2 ih— 1 directions, and
o _ o ~isinfinite in 1 direction.

The Madelung energies in this equation involve infinite  proceeding as above, we first obtain a rigorous upper
sums, which are readily carried out numeric4fygut cannot bound, Eyge= — (1+1/d)J/8, and a rigorous lower bound,
be _done analytlcally. Howeve_r, we can make rather goclxqglower: —(1+3/d)J/8 on the ground-state energy per site. It
estimates by replacing the lattice sums by integrals. Specifis jnteresting, in this context, that the ground-state energy in
cally, for fixed hole concentratiox=(1/2)(1— o), an array  the larged limit approaches that of the classical dlestate,
with period L, which consists of alternating stripes of= even though this is a one dimensional system, so we know
—1 of width W=(L/2)(1— o) and intervening regions of rigorously that there is no true long-range magnetic order.
width (L—W) of o= +1, is seen in this way to have energy Indeed, following the Haldane conjectueit is clear that
per unit volume(defined to be volume associated with afor any finited, this system will have exponentially falling

single lattice sitg magnetic correlations and a spin gap. However, this physics
will only be manifest at very long distancésrobably expo-
QL?x?(1—x)? nentially long in the larget limit), and at shorter distances
Estripe~ — WX+ —— ——. (8)  the system will appear orderéd.

Again, without repeating the earlier analysis, we can com-
This expression is readily minimized with respectlipor  pute the ground-state energy in perturbation theory in powers
equivalently the stripe widthV, with the result of y, which, to second order, gives
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(d+1)J, y? y*(d?+3d—2) . best available data based on analytic and numerical studies
Ear=— 571t 5 +4153 — O |, of the model ind=2.
8d d 4d°(d+1)(2d—-1) . .
We can get more ambitious, and consider how good the
. (85 gquantitative agreement is between available numerical and
from which we can deduce that series results for the model in physical dimensions and the
3 14y2) y2 4 gy results of the large dimension expansion. In Tables | and Il
—_Z (_y y_ ¥y & 5 we compare known results for the undoped, spin-1/2 Heisen-
Ear + gt o HO(1dY) . ) . : : :
8 d d® 8d” 16d berg model in physical dimensions with the results of

(86) straightforward perturbation theoryin powers of y
=J, /1J,) and of the 1d expansion. Clearly, both give quan-
XI. EXTRAPOLATION TO d=2 AND d=3 titatively excellent results. However, whereas perturbation
. . . ... theory gives its best results if terms only to second order are
While the 14 expansion gives us a small parameter W'thretained, the I expansion appears to approach closer the

which to analyze the problem, itis Ieglt_lmate_to ques_tlon Fhecorrect value with each successive order, at least to fourth
relevance of the @/ results for the physically interesting di-

. _ o ; order (which is the highest order we have computdd a
men_S|on5d—2 andd=3. (As there exist good methods for sense, for an asymptotic expansion, it is the question of to
solving the present class of problemsds-1, we are not

d with hi its all th dowrd how high an order do the results improve, even more than
c_oiu):erne with pushing our results all the way dowrtto  yq gyerall accuracy of the result, which addresses the issue

. of how small is the expansion parameter.
For most of the types of order that we have considered, P P

d=1 is the lower critical dimensioffor quantum disorder-
ing), and it is reasonable to expect largeesults to be quali-
tatively reliable forzero-temperatureroperties of the sys- This work was supported in part by the National Science
tem ind=2 and 3, but not for finite-temperature properties Foundation Grant No. DMR93-1260&.W.C., S.A.K., and

in d=2. As mentioned previously, this expectation is bornezZ.N.) at UCLA. The work at Brookhavef\V.J.E) was sup-

out to a large extent by comparison of the lachghase ported by the Division of Materials Science, U.S. Depart-
diagram of thet-J model shown in Figs. 1 and 2, with the ment of Energy, under Contract No. DE-AC02-76CHO00016.
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