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Dimensional crossover in quasi-one-dimensional and high-Tc superconductors
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The one-dimensional electron gas exhibits spin-charge separation and power-law spectral responses to many
experimentally relevant probes. Ordering in a quasi-one-dimensional system is necessarily associated with a
dimensional crossover, at which sharp quasiparticle peaks, with small spectral weight, emerge from the inco-
herent background. Using methods of Abelian bosonization, we derive asymptotically correct expressions for
the spectral changes induced by this crossover. Comparison is made with experiments on the high-temperature
superconductors, which are electronically quasi-one-dimensional on a local scale.
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In this paper, we consider the spectral signatures of
mensional crossover in the continuum theory of a quasi-o
dimensional superconductor. This problem is of interest in
own right and for application to materials which are stru
turally quasi-one-dimensional, such as the Bechgaard s
~organic superconductors!. We believe that it is also interes
ing as a contribution to the theory of the high-temperat
superconductors. Although structurally these materials
quasi-two-dimensional, there is both theoretical and exp
mental evidence1 of a substantial range of temperatures
which ‘‘stripe’’ correlations make the electronic structure l
cally quasi-one-dimensional, a phenomenon we have lab
‘‘dynamical dimension reduction.’’ Similarly, the (ET)2x or-
ganic superconductors are two-dimensional doped antife
magnets, which we expect to show similar behavior. M
generally, the high-temperature superconducting s
emerges from a non-Fermi-liquid normal state, often with
normal-state pseudogap. The quasi-one-dimensional su
conductor is the only solvable case in which such an evo
tion can be traced, theoretically.

A quasi-one-dimensional system can be thought of as
array of ‘‘chains,’’ in which the electron dynamics within
chain is characterized by energy scales large compared t
electronic couplings between chains. Since a o
dimensional system cannot undergo a finite tempera
phase transition, any ordering transition with a finite critic
temperatureTc is necessarily associated with a dimensio
crossover. The electronic properties at temperatures~or en-
ergies! large compared toTc can be understood by ignorin
the interchain coupling, while at lower temperatures or en
gies, the behavior is that of a three-dimensional system.

In the one-dimensional electron gas2 ~1DEG!, as a conse-
quence of spin-charge separation, the elementary excita
are collective modes with unusual quantum numbers and
pological properties: The charge excitations are best un
stood as soundlike density-wave phasons~or, in dual repre-
sentation, superconducting quasi-Goldstone modes! when
PRB 620163-1829/2000/62~5!/3422~16!/$15.00
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the system is gapless, and as charge solitons with charge61
and spin 0 when a charge gap is induced.@The precise mean
ing of the soliton ‘‘charge’’ is a quantized unit of chirality
see Eq.~33! and the subsequent discussion.# Similarly, the
spin excitations of a spin-gapped system are spin solit
with charge 0 and spin 1/2. When the elementary excitati
do not have the quantum numbers of the experimentally
cessible excited states, spectral functions do not exhibit sh
peaks corresponding to a well defined mode with a defin
dispersion relation,v5e(k). The single hole spectral func
tion G,(k,v), which is measured in angle-resolved phot
emission spectroscopy~ARPES!, involves excited states with
chargee and spin 1/2, which thus consist of at least o
charge soliton and one spin soliton. The dynamic spin str
ture factorS(k,v), measured by neutron scattering, involv
excited states with spin 1, which thus consist of two sp
solitons.~We will see in Sec. IV C that, in fact, the relevan
excited states contain two spin solitons and at least
charge antisolitons.!

Below Tc , where the system is three dimensional, we w
show that the solitonic excitations of the 1DEG are confin
in multiplets with quantum numbers that are simply relat
to those of the electron. For the case of three-dimensio
charge-density wave ordering, this has been known for so
time. For the case of the superconductor, it is related to
fact, noted recently by Salkola and Schrieffer,3 that either a
spin soliton or a charge soliton induces ap kink in the su-
perconducting correlations. As a consequence of confi
ment, there is a finite probability of creating a final sta
consisting of a single bound spin and charge soliton pai
an ARPES experiment. This will show up as a coher
~delta-function! piece in the zero temperatureG,(k,v).

In this paper, we show that the coherent piece of
single particle spectral functions has a weight which va
ishes in the neighborhood ofTc in proportion to a positive
power of the interchain Josephson energy. It is this fact,
thespectral weightof the coherent piece is strongly temper
3422 ©2000 The American Physical Society
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ture dependent belowTc , rather than either the energy or th
lifetime of the normal mode, which is the most notable fe
ture that emerges from our analysis. It is highly reminisc
of behavior observed in ARPES~Refs. 4 and 5! and inelastic
neutron-scattering6 measurements on the high-temperatu
superconductors. We have also identified a resonant fea
in the spin spectrum of a quasi-one-dimensional superc
ductor that emerges at temperatures well belowTc .

If the 1DEG remains gapless down toTc , the supercon-
ducting transition is BCS-like, in the sense that both pair
and phase coherence occur at the same time. In this case
are induced by the interchain Josephson tunneling. We
mainly be concerned with the case in which a sort of ‘‘pa
ing,’’ i.e., the opening of a spin gapDs.0, occurs in the
one-dimensional~1D! regime well aboveTc . In this caseTc
is primarily associated with phase ordering, and its scal
set by the superfluid density,7,8 rather than by the zero
temperature single-particle gap scaleD0/2. In such circum-
stances the superconducting state, even at very low temp
tures, maintains a memory of the separation of charge
spin which is a feature of the 1D normal state. The uniq
‘‘coherence length’’ of a BCS superconductor is replaced
two distinct correlation lengths:9 a spin length,js5vs /Ds ,
where vs is the spin velocity, and a charge length,jc
5vc /Dc , whereDc; 2Tc .

The remainder of the paper is divided into two se
contained parts; in Secs. I–IV we derive asymptotically e
act results for the spectral properties of a quasi-o
dimensional superconductor in the limit of weak intercha
coupling. In Sec. V, we summarize the principal results a
discuss their application to experiment, especially in
high-temperature superconductors. The reader who is in
ested only in results, not their derivation, can skip the int
vening sections.

The model we study is defined by the Hamiltonian

H5(
j
E dxHj1HJ , ~1!

where the sum runs over chains,H j is the Hamiltonian of the
1DEG on chainj, andHJ is the Josephson coupling betwe
chains. In Secs. I–III, we consider the single chain probl
(HJ50). The problem is formulated using Abelia
bosonization in Sec. I. Next, we discuss the spectral fu
tions for the 1DEG without~Sec. II! and with ~Sec. III! a
spin gap—explicit expressions for various quantities in
presence of a spin gap are reported here. In Sec. IV,
extend these results to the case in which the most rele
interchain coupling is the Josephson tunneling. An adiab
approximation, which is exact in the limit whereDs@Dc ,
replaces the spin-charge separation of the purely 1D prob
as the central feature of the spectrum—this section cont
our principal results. Applications to high-temperature sup
conductors are described in Sec. V. Various appendices
pand upon the derivations in Sec. IV.

I. ABELIAN BOSONIZATION
AND THE SPECTRAL FUNCTIONS

We begin by considering the properties of a single ch
in the absence of any interchain coupling; we treat this pr
-
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lem using Abelian bosonization, which is based on the f
that the properties of an interacting 1DEG at low energ
and long wavelength are asymptotically equal to those o
set of two independent bosonic fields, one representing
charge and the other the spin degrees of freedom in the
tem. The widely discussed separation of charge and spin10,11

in this problem is formally the statement that the Ham
tonian densityHj can be expressed as

H5Hc1Hs , ~2!

where the chain index is implicit, and the charge and s
pieces of the Hamiltonian are each of the sine Gordon v
ety,

Ha5
va

2 FKa~]xua!21
~]xfa!2

Ka
G1Va cos~A8pfa!, ~3!

wherea5c,s for the charge and spin fields, respectively,ua
is the dual field tofa , or equivalently,]xua is the momen-
tum conjugate tofa . We consider a sufficiently incommen
surate 1DEG and therefore setVc50 since it arises from
umklapp scattering. Of course, if the umklapp scattering
crucial to explain doped insulator behavior, its role cannot
neglected. Where there is no spin gap, or at temperat
large compared toDs , we can likewise setVs50.

When Vs is relevant~perturbatively, this meansKs,1),
the spin gap is dynamically generated, i.e., it depends b
on Vs and the ultraviolet cutoff in the problem,L, according
to the scaling relationDs;vsL@Vs /vsL

2#1/(222Ks). At the
gapless fixed point, spin-rotational invariance requiresKs
51, at which pointVs is perturbatively marginal. It is mar
ginally irrelevant for repulsive interactions (Ks.1) and mar-
ginally relevant for attractive interactions (Ks,1). Thus the
long distance spin physics is described byHs with Vs50
and Ks51 for a gapless spin-rotationally invariant phas
Where there is a spin gap in a spin rotationally invaria
system, it is exponentially small for weak interactions,Ds

;AVsvs exp@2vsL
2/2pVs#.

In order to compute correlation functions, we use t
Mandelstam representation12 of the fermion field operators

cl,s~x!5Ns exp@ ilkFx2 iFl,s~x!#, ~4!

whereNs contains both a normalization factor~which de-
pends on the ultraviolet cutoff! and a ‘‘Klein’’ factor ~which
can be implemented in many ways! so thatNs anticommutes
with Ns8 for sÞs8 and commutes with it fors5s8. In
addition,

Fl,s5Ap/2 @~uc2lfc!1s~us2lfs!#, ~5!

where l521 for left moving electrons,l511 for right
moving electrons, ands561 refers to spin polarization
From Eq.~4!, it is a straightforward~and standard2! exercise
to obtain the boson representations of all interesting elec
bilinear and quartic operators. Physically,fc and fs are,
respectively, the phases of the 2kF charge-density wave
~CDW! and spin-density wave~SDW! fluctuations, anduc is
the superconducting phase. The long-wavelength com
nents of the charge (r) and spin (Sz) densities are given by
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r~x!5(
l,s

cl,s
† cl,s2

2kF

p
5A2

p
]xfc ,

Sz~x!5
1

2 (
l,s

scl,s
† cl,s5A 1

2p
]xfs.

When analyzing results for this model, it is always impo
tant to remember that the parameters which enter the
theory are renormalized, and are related to the microsc
interactions in a very complicated manner. For instance,
though for a single-component 1DEG with repulsive inter
tions Vs is always irrelevant, for multicomponent 1DEG’
and for the ‘‘1DEG in an active environment,’’ it is commo
to find a dynamically generated spin gap, even when
microscopic interactions are uniformly repulsive.13–16

The bosonized expressions for all electron operators
readily extended to an array of chains by adding a ch
index to the Bose fields and to the Klein factors; the Kle
factors on different chains must now anticommute with ea
other. Where single-particle interchain hopping is releva
the Klein factors appear explicitly in the bosonized Ham
tonian. Where only pair hopping and collective interactio
between neighboring chains need be included in the l
energy physics, the Klein factors cancel inH.

While it is generally simpler to derive results concerni
the spectrum, it is important for comparison with experime
to compute actual correlation functions. Specifically, we w
consider the transverse spin dynamic structure factor

S̃~x,t;T![^S2kF

x †~x,t !S2kF

x ~0,0!&1^S2kF

y †~x,t !S2kF

y ~0,0!&,
~6!

where

S2kF
5

1

2 (
s,s8

c1,s
† tss8c21,s8 , ~7!

and thet are Pauli matrices. We will also consider the on
hole Green’s function,

G̃,~x,t ![^c21,↑
† ~x,t !c21,↑~0,0!&, ~8!

the singlet-pair correlator,

x̃~x,t ![^c1,↑
† ~x,t !c21,↓

† ~x,t !c21,↓~0,0!c1,↑~0,0!&, ~9!

and the various spectral functions,S, G,, andx, obtained by
Fourier transforming these correlators. As a consequenc
separation of charge and spin,S̃, G̃,, andx̃ are expressible
as a product of spin and charge contributions, and theref
S, G,, andx are convolutions. For instance,

G,~k,v!5E dq

2p

dn

2p
Gs~k2q,v2n! Gc~q,n!. ~10!

II. HIGH TEMPERATURE: LUTTINGER LIQUID
BEHAVIOR

At temperatures large compared toTc and the spin gap
Ds ~or at all temperatures in systems in whichTc5Ds50),
the 1DEG exhibits ‘‘Luttinger liquid’’ behavior. Because th
Luttinger liquid is a quantum critical system, the respon
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functions have a scaling form. Specifically, this implies2 that

G,~k,v;T!5T2gc12gs21G,~k/T,v/T;1!, ~11!

where we define fora5c or s

ga5
1

8
~Ka1Ka

2122!, ~12!

and that so long asKs>1,

S~k,v;T!5T(Ks
21

1Kc22)S~k/T,v/T;1!. ~13!

Note that here, and henceforth, we will measurek relative to
kF and 2kF , respectively, when computing the scaling fun
tions G, andS. If the system is spin-rotationally invarian
Ks51 in the above expressions.

The form of these scaling functions can be computed a
lytically in many cases; this has recently been accomplis
in Ref. 17. They may or may not have a peak at energ
small compared to the bandwidth, depending on certain
ponent inequalities. Where there is a peak, it occurs at p
tive energiesv56vak1(const)T, but the peak width, how-
ever defined, does not narrow in proportion toT at low
temperatures; such a peak doesnot correspond to a quasipar
ticle.

III. INTERMEDIATE TEMPERATURE:
THE LUTHER-EMERY LIQUID

WhenVs is relevant, the spin sine-Gordon theory scales
a strong-coupling fixed point, and the excitations are mass
solitons, in whichfs changes by6Ap/2 ~i.e., Sz561/2).
This problem is most simply treated in terms of spin fermi
fields,

Cs,l
† 5Ns exp@ iAp/2~us22lfs!#. ~14!

The refermionized form of the Hamiltonian is then

Hs5 i ṽs@Cs,21
† ]xCs,212Cs,1

† ]xCs,1#1D̃s@Cs,1
† Cs,21

1H.c.#1gsCs,1
† Cs,21

† Cs,21Cs,1 , ~15!

where

ṽs5vsS 1

4Ks
1KsD ,

D̃s5
pVs

L
,

gs52pvsS 1

4Ks
2KsD . ~16!

For Ks51/2, which is known as the Luther-Emer
point,10 the refermionized model is noninteracting and ma
sive, with a gapDs5D̃s . Assuming there is a single massiv
phase of the sine-Gordon theory, the Luther-Emery mod10

will exhibit the same asymptotic behavior as any other mo
in this phase. Formally, the Luther-Emery point can
thought of as a strong-coupling fixed point Hamiltonian, a
gs , which vanishes at the fixed point, is the amplitude o
leading irrelevant operator.18 We will henceforth compute



e

h
:

e
c

io
po

d

o
tr

or
re

t
ito

n
-
he

d-
-
te

e
th
pa

ee,
f
is
to

ot
al-

ies
ch
q.
r-

naf-

re
still
can

se
that
not

the
ility

PRB 62 3425DIMENSIONAL CROSSOVER IN QUASI-ONE- . . .
correlation functions at the Luther-Emery point, and th
comment on the effects of deviations from this point.

Now, in computing the various spectral properties of t
system, we can distinguish two regimes of temperature
temperatures large compared toDs , the spin gap is negli-
gible, and the results for the Luttinger liquid apply. If th
temperature is small compared to the spin gap, then we
compute the spin contributions to the various correlat
functions in the zero-temperature limit, and only make ex
nentially small errors of order exp(2Ds/T). The spin piece of
the transverse spin response function can be expresse
terms of the spin fermion fields

S̃s~x,t !5^Cs,1
† ~x,t !Cs,21

† ~x,t !Cs,21~0,0!Cs,1~0,0!&.
~17!

Since the theory reduces, at the Luther-Emery point, t
theory of free massive fermions, the corresponding spec
function can be readily computed with the result, forT50,

Ss~k,v!5
v224Es

2~k/2!

4vs
2uq1Es~q2!2q2Es~q1!u

Q@v22Es~k/2!#,

~18!

where the spin soliton spectrum is

Es~k!5Avs
2k21Ds

2, ~19!

and q1,2 are the solutions of the quadratic equationv
1Es(q)1Es(k1q)50. Explicitly,

q1,25
k

2
6

v

2vs
A11

4Ds
2

vs
2k22v2

. ~20!

The spin piece of the one hole Green’s function is m
complicated, since it involves nonlocal operators in the
fermionized form:

G̃s~x,t !5^Us
†~x,t !Cs,21

† ~x,t !Cs,21~0,0!Us~0,0!&,
~21!

where the vertex operatorUs(x)5eiAp/2fs(x) with fs(x)
5Ap/2(l*xdyCs,l

† Cs,l . From kinematics, it follows tha
this Green’s function consists of a coherent one spin sol
piece and an incoherent multisoliton piece:

Gs~k,v!5Zs~k!d@v2Es~k!#1Gs
(multi)~k,v!, ~22!

where the multisoliton piece is proportional toQ@v
23Es(k/3)#. ~Deviations from the Luther-Emery point i
the casegs.0 will result in the formation of a spin soliton
antisoliton bound state, a ‘‘breather,’’ which can shift t
threshold energy for multisoliton excitations somewhat.!

At the Luther-Emery point it is possible to obtain close
form expressions19 for the matrix elements of the vertex op
erator between the vacuum and various multisoliton sta
and from that to computeZs explicitly. We will report this
calculation in a forthcoming paper, Ref. 17. Here, we us
simple scaling argument, which can be generalized to
case of nonzero interchain coupling, to derive the princi
features of this result, especially the dependence ofZs on
Ds . In the absence of a spin gap, and atT50, Gs can be
readily evaluated to give the scaling form
n

e
at
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-
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e
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n

s

a
e
l

Gs5
p ~vsL!1/2 22gs

G~gs!G~gs1
1
2 !

~v1vsk!gs21~v2vsk!gs21/2

3Q~v2vsuku!. ~23!

Because the sine-Gordon field theory is asymptotically fr
the high energy spectrum, and hence the dependence oGs
on L, is unaffected by the opening of a spin gap. With th
observation, it is simply a matter of dimensional analysis
see that

Zs~k!5~Ljs!
1/2 22gsf s~kjs!, ~24!

wherejs5vs /Ds is the spin correlation length.f s is a scaling
function which is independent ofKs . It can be calculated17

using the exact matrix elements available forKs51/2, with
the result

f s~x!5cS 12
x

A11x2D , ~25!

wherec is a numerical constant.
The above extends the earlier results of Voit20 and

Wiegmann.21 In particular, the analytic structure~as a func-
tion of k andv) of the one soliton contribution to Eq.~22!
reproduces that found in earlier work. Those works did n
discuss the nonanalyticity at the three soliton threshold,
though these are fairly obvious; more muted singularit
occur at the five and higher multisoliton thresholds, whi
we will not discuss explicitly. The specific expression in E
~24! is the most important feature of this result for the pu
poses of the present paper.

The charge pieces of both response functions are u
fected by the opening of the spin gap. Consequently,S and
G, have power-law features~which can be a peak or a
shoulder depending onKc) at v52Es(k/2)1O(T) and v
5Es(k)1O(T), respectively, with a shape and temperatu
dependence, both readily computed, determined by the
gapless charge-density fluctuations. For example, we
evaluate the spectral function explicitly17 at T50 in the limit
vs /vc→0 @and for arbitraryv,3Es(k/3)], or when uv
2Dsu!Ds ~for arbitraryvs /vc):

G,~k,v!5
1

4

B~gc ,gc1 1
2 !

G~gc!G~gc1 1
2 !

S Lvc

2 D 21/222gc

3Zs~k!@v2Es~k!#2gc21/2Q@v2Es~k!#.

~26!

HereB(x,y) is the beta function. Again, the fact that the
excitations are not quasiparticles is reflected in the fact
even where peaks in the spectral function occur, they do
narrow indefinitely asT→0.

In the presence of a spin gap, the spin contribution to
long-distance behavior of the superconducting susceptib
is a constant;

x̃~x,t !;u^Us
2&u2^eiA2puc(x,t)e2 iA2puc(0,0)&

;~Ljs!
2Ks^eiA2puc(x,t)e2 iA2puc(0,0)&. ~27!
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From this, one sees that, within a chain, one can iden
(Ljs)

2Ks/2 as the ‘‘amplitude’’ andA2puc as the ‘‘phase’’
of the order parameter.13

IV. LOW TEMPERATURE:
THE 3D SUPERCONDUCTING STATE

For temperatures of orderTc and below, interchain cou
plings cannot be ignored. Single-particle hopping and
magnetic couplings are irrelevant by virtue of the p
existing spin gap. ForKc.1/2, the Josephson coupling
perturbatively relevant, but forKc,1, the 2kF CDW cou-
pling is more relevant. For the simplest realizations of
1DEG,Kc,1 corresponds to repulsive interactions betwe
charges. However, we have shown22,13 that for fluctuating or
meandering stripes, such as occur in the high-tempera
superconductors, the CDW coupling gets dephased, so
the Josephson coupling is the most relevant, even when
,Kc,1.

Since we are interested in the onset of superconductiv
we consider the case in which the Josephson coupling
tween chains is more relevant. The pair tunneling interac
between chains, which appeared in Eq.~1!, can be simply
bosonized:

HJ52JSC(
^ i , j &

E dx@D̂ i
†D̂ j1H.c.#, ~28!

where the pair-creation operator on chain numberj is

D̂†~x,t !5c1,↑
† c21,↓

† 1c21,↑
† c1,↓

†

}cos~A2pfs!exp~ iA2puc!, ~29!

and we have left the chain index implicit.
Since the state belowTc has long-range order, and sinc

we assume that the coupling between chains is weak,
reasonable to treat it in mean-field approximation,23 although
we continue to treat the one-dimensional fluctuations
actly. Thus, rather than considering a full three-dimensio
problem, we consider the effective single chain problem
fined by the Hamiltonian

H5Hs1Hc2J cos~A2pfs!cos~A2puc!, ~30!

where J is related to the pair tunneling amplitude by th
mean-field relation

J5zJSC~L/p!2^ cos~A2pfs!cos~A2puc!&, ~31!

wherez is the number of nearest-neighbor chains.@Since the
average of cos(A2pfs)sin(A2puc) vanishes, no sine term
appears in the effective Hamiltonian~30!.# Note that the pair
hopping term in Eq.~30! couples charge and spin, as is cha
acteristic of higher dimensional couplings.

The mean-field approximation is exact in the limit
largez and smallzJSC. In three dimensions, this mean-fie
approximation will produce some errors in the critical r
gime in the vicinity ofTc , but because of the long correla
tion length along the chain just aboveTc , the critical region
is always small for smallJSC, and well belowTc , this ap-
proximation is safe.24
y
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e
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re
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y,
e-
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-
l
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Because of the presence of relevant cosine terms, t
are superselection rules which divide Hilbert space into v
ous soliton sectors. The soliton sectors are specified by
integrals:

Ns5A2/pE
2`

`

dx]xfs5A2/p @fs~`!2fs~2`!#

52E dxSz , ~32!

and

Nc5A2/pE
2`

`

dx]xuc5A2/p @uc~`!2uc~2`!#.

~33!

Ns is simply the number of spin solitons minus the num
ber of antisolitons or the total value ofSz in units of\/2. The
interpretation ofNc is a bit more subtle. Since we are look
ing at a superconducting state, the electrostatic charge
quasiparticle is not defined.25–27However,Nc is a conserved
‘‘chirality’’ equal to the number of right moving minus the
number of left moving electrons, so that we can still interp
eNc as a sort of quasiparticle ‘‘charge’’; it represents t
coupling of the quasiparticles to a magnetic flux.28,25,26

The presence of the cos(A8pfs) term in the single chain
Hamiltonian results in the quantization ofNs in integer units.
The presence of the cos(A2pfs)cos(A2puc) term in H re-
sults in the quantization condition thatNs1Nc be an even
integer! Physically, this means that excitations can have s
\ and charge 0 (Ns52 and Nc50), spin 0 and charge 2
(Ns50 andNc52), spin\/2 and charge 1 (Ns51 andNc
51), etc., but that all the exotic quantum numbers of t
soliton excitations of the isolated 1DEG are killed. Formal
the addition of the pair hopping term to the Hamiltonian
the 1DEG leads to a confinement phenomenon. Along
entire segment of chain between two spatially separa
6Ap/2 solitons, there is a change in sign of the pair hopp
term @see Eq.~29!#. This leads to an energy which grow
linearly with the separationx between solitons,;Juxu, re-
gardless of whether they are charge or spin solitons or a
solitons.

The importance of this observation becomes clear w
we study the operators in whose correlation functions we
interested. Since

eiAp/2us(x)fs~y!e2 iAp/2us(x)5fs~y!2Ap/2Q~y2x!,
~34!

and

eiAp/2fc(x)uc~y!e2 iAp/2fc(x)5uc~y!1Ap/2Q~x2y!,
~35!

it is clear that the fermion annihilation operatorC21,↑ cre-
ates a spin antisoliton and a charge antisoliton, while thekF

piece of the spin-raising operator,S2kF

1 , creates a pair of spin

solitons and a pair of charge antisolitons. Both these com
nations decay into a set of free solitons in the absence of
interchain coupling, but in its presence, the former becom
a bound state, and the latter a resonant state. ThusG, de-
velops a coherent piece with a well defined dispersion re
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tion as superconducting phase coherence between chain
curs.S develops a resonant peak at a temperature well be
Tc .

A. Zero-spin soliton sector

For the case in which the spin gapDs of the isolated chain
is large compared to the interchain coupling, the fluctuati
of the spin field are high energy~fast! compared to any
charge fluctuations, and indeed only slightly affected by
onset of superconducting order. In this limit, the eigensta
can be treated in the adiabatic approximation.

In the ground state (Ns50) sector, the spin field fluctua
tions are little affected byHJ ; all spin correlations can thu
be computed as in the previous section. Moreover, beca
of the spin gap, so long asT!Ds , the spin fields can be
approximated by their ground state. For computing
charge part of the wave function, we can replace the oper
cos(A2pfs) in HJ by its expectation value at zero temper
ture in the decoupled ground state,

cos~A2pfs!→^cos~A2pfs!&o[Cs;~Ljs!
2Ks/2, ~36!

where the subscript ‘ ‘o’ ’ refers to the expectation value in
the ensemble withJSC set equal to zero~see also Ref. 29!.
This leaves us with a sine-Gordon equation for the cha
degrees of freedom, with potential

JCs cos~A2puc!. ~37!

Again, we solve this problem by refermionizing

Cc,l
† 5Nc exp@ iAp/2~uc22lfc!#. ~38!

The refermionized form of the Hamiltonian is

Hc5 i ṽc@Cc,21
† ]xCc,212Cc,1

† ]xCc,1#

2D̃c@Cc,1
† Cc,21

† 1H.c.#

1gcCc,1
† Cc,21

† Cc,21Cc,1 , ~39!

where

ṽc5vcS 1

4Kc
1KcD ,

D̃c5
pJCs

L
,

gc52pvcS 1

4Kc
2KcD . ~40!

SinceNs50, the superselection rule impliesNc52m, which
upon refermionization is simply the condition

2(
l

lE dx@Cc,l
† Cc,l#5Nc/25m. ~41!

It is also interesting to note that the superconducting p
creation operator can be expressed in an intuitively appea
form in terms of charge soliton creation operators

D̂†}cos~A2pfs!Cc,1
† Cc,21

† . ~42!
oc-
w

s

e
s

se

e
or

e

r-
ng

Recall that here the charge solitons are spinless fermi
This expression emphasizes13 the fact that spin gap forma
tion, which is associated with the quenching of the fluctu
tions of the spin-density phase,fs , can also be identified
with the growth of theamplitudeof the superconducting or
der parameter. While the charge solitons clearly also mak
contribution to the amplitude of the order parameter,
phase of the order parameter comes entirely from the cha

For Kc51/2, just as for the Luther-Emery point for th
spin fields, the refermionized Hamiltonian for the charg
excitations is noninteracting and massive~gapped!, and Dc

5D̃c . In computing the asymptotic form of correlations w
will set Kc51/2. We can now readily compute the expec
tion value of the pair hopping term so as to relate two phy
cally important quantities: the excitation energy scaleDc and
the interchain portion of the internal energy

Dc^Cc,1
† Cc,21

† 1H.c.&5J^cos~A2pfs!cos~A2puc!&

5~Dc /pjc!u0~Dc ,T!, ~43!

wherejc5vc /Dc is the charge correlation length. Equatio
~43! has the form of a BCS gap equation with

u0~Dc ,T!5E
0

vcL

dx
1

Ax21Dc
2
tanhS 1

2T
Ax21Dc

2D , ~44!

where the mean-field relation forDc(T) is

u0~Dc ,T!5
pvc

zJSCC s
2

. ~45!

Consequently, we find the familiar BCS relations

Tc50.57Dc~0!, ~46!

Dc~0!52vcLexp@2pvc /zJSCC s
2#, ~47!

Dc~T!'1.74Dc~0!A12T/Tc for T'Tc . ~48!

In general, the actual form ofDc(0) in terms ofJSC andCs is
modified according to the microscopic value ofKc .

The transverse superconducting phase stiffnessk' ~pro-
portional to the superfluid density! is

k'52pa^HJ&, ~49!

whered is the spacing between chains and^HJ& is given in
Eq. ~43!. Thus at zero temperaturek';Tc

2/vc . As is shown
in Appendix B, for a system with equal areas of domains
which the stripes run along thex andy directions, the mac-
roscopic phase stiffness is equal to the geometric mean o
superfluid density in the directions parallel and perpendicu
to the chains,k̄5Ak ik'. Since the phase stiffness along th
chains is simplyk i5vcKc , it follows that k̄(T50) is ~up to
logarithmic corrections coming fromu0) simply proportional
to Tc . This is a microscopic realization of a more gene
phenomenon which occurs in systems with low superfl
density;8 it is phase ordering, as opposed to pairing, wh
determinesTc . In a future publication,30 we will study the
effects of quantum and thermal phase fluctuations on
evolution of the superfluid density of a quasi-on
dimensional superconductor.
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With little additional effort, we can study the pair fiel
susceptibilityx at energies small compared to 2Ds . In this
low-energy limit, as in Eq.~27!, we can replace the spi
operators inx by their ground-state expectation values.

The charge part ofx̃ can be expressed in terms of th
charge fermion fields:

x̃c~x,t !5^Cc,1
† ~x,t !Cc,21

† ~x,t !Cc,21~0,0!Cc,1~0,0!&.
~50!

At the free charge fermion point (Kc51/2) the correspond
ing spectral function is readily evaluated, forT50 and v
!2Ds , with the result

x~k,v!5S Csu0

jc
D 2

d~k!d~v!

1
C s

2@v224Ec
2~k/2!12Dc

2#

4vc
2uq1Ec~q2!2q2Ec~q1!u

Q@v22Ec~k/2!#,

~51!

whereEc(k) andq1,2 are the analogs of Eqs.~19! and ~20!
with Dc substituted forDs andvc for vs .

Away from the Luther-Emery point, ifgc.0 (Kc,1/2),
the two solitons repel, and hence the effect ofgc can be
ignored, but forgc,0 (Kc.1/2), there is an attractive inter
action between the two solitons and hence, this being a
all a one-dimensional problem, they form a bound state. T
will slightly modify the expression forx.

B. The one hole sector

In the one soliton sector of the spin Hamiltonian, the ad
batic approximation requires reexamination. While for t
most part, the spin modes are fast compared to the ch
modes, the Goldstone mode~translation mode of the spin
soliton! is slow compared to all other modes, and so must
treated in the inverse adiabatic approximation. Thus we c
sider the charge Hamiltonian with a spin antisoliton at fix
positionRs . The pair tunneling term is then

JCs sgn~x2Rs!cos~A2puc!, ~52!

where we have used the fact thatjs5vs /Ds ~which charac-
terizes the width of the spin soliton! is small compared to the
charge correlation length,jc5vc /Dc , to approximate the
profile of the spin soliton by a step function. Upon referm
onization, the charge Hamiltonian is still of the same form
Eq. ~39! with the term proportional toD̃c replaced by

D̃c→2D̃c sgn~x2Rs!. ~53!

For Kc51/2, upon the canonical transformation,

cc,215Cc,21
† , cc,15Cc,1 , ~54!

the charge soliton Hamiltonian is of the same form31 as the
fermionic Hamiltonian of a commensurability two Peier
insulator, ‘‘polyacetylene,’’ in the presence of a topologic
soliton. As is well known,31 there is an index theorem tha
implies the existence of a zero energy bound state assoc
with the soliton, the famous ‘‘midgap state’’ or ‘‘zer
mode.’’ All other fermionic states have energies greater th
er
is

-

ge

e
n-

s

l

ted

n

or equal toDc . Importantly, since in this sectorNs521, the
superselection ruleNc52m11, requires that the fermion
number is half integer!

2(
l
E dx:@cc,l

† cc,l#: 5Nc/25m11/2. ~55!

This is essential, since with the midgap state occupied
fermion number is31 11/2, while with it empty the fermion
number is21/2. The midgap state is associated with t
bound state of the spin and charge antisolitons.

To compute the charge contribution to the soliton creat
energy we need to evaluate the difference between
ground-state energies of the charge Hamiltonian in the p
ence and absence of a kink. We have done this by taking
limit of vanishing soliton width of a general expression
Takayama, Lin-Liu, and Maki,32 ~and dividing by 2 for the
spinless case!. The resulting soliton creation energy is ju
Dc/2 ; in other words, the rest energy of the electron, i.e.,
bound state of a spin soliton and a charge soliton, is

D05Ds1Dc/2'Ds . ~56!

From this discussion, we can immediately conclude t
for T!Tc!Ds , the one hole spectral function has a coher
piece and a multiparticle incoherent piece,

G,~k,v!5Z~k!d@v2E~k!#1G(multi)~k,v!, ~57!

where

E~k!5Avs
2k21D0

2. ~58!

This follows from the fact that the bound state of a sp
soliton and a charge soliton has the same quantum num
as a hole. The multiparticle piece33 has a threshold slightly
above the single hole threshold atv5E(k)12Dc .

The overlap factorZ(k) contains factors from both the
spin and the charge parts of the wave function; so long
kjs!1, Z(k)5Zc(k)Zs(0) whereZs(0) depends on the spin
correlation length as in Eq.~24!, andZc(k) contains all re-
maining contributions. We can obtain a scaling form forZc
using the same method of analysis employed previously
Zs . Specifically, atT50 in the absence of interchain cou
pling, and for v!3Ds and ukjsu!1, G, is given by the
expression in Eq.~26!. Since the opening of a charge ga
does not affect the high-energy physics, the dependenc
G, on L is unaffected by the interchain coupling. Indeed,
long asDc!Ds , the dependence ofG, on Ds is likewise
unchanged. Thus, by dimensional analysis, it follows tha

Z~k!5Zs~0!~Ljc!
21/222gcAgc

f̃ ~kjc!, ~59!

where f̃ is a scaling function and

Agc
5

B~gc ,gc11/2!

G~gc!G~gc11/2!
. ~60!

Unfortunately, we do not have exact results from which
computef̃ (x) explicitly, but there is no reason to expect it
have any very interesting behavior for smallx.

At temperatures betweenT50 andT5Tc , the same ar-
guments lead to a simple approximate expression for
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spectral function. Specifically, the principal temperature
pendence comes fromDc which is a decreasing function o
T. At mean-field level, the temperature dependence ofDc can
be computed from Eq.~44!. In particular, it vanishes atTc
according to Eq.~48!. Since fluctuation effects produce s
perconducting correlations between neighboring chains
temperatures aboveTc , this simple mean-field behavior wil
be somewhat rounded, but the qualitative point thatDc be-
comes small at temperatures aboveTc is quite robust.

Consequently, the quasiparticle weightZ, which is pro-
portional toDc

2gc11/2, is a strongly decreasing function ofT
which vanishes in the neighborhood ofTc . The quasiparticle
gap,D0, on the other hand, is only weakly temperature d
pendent, dropping from its maximum valueD05Ds
1 1

2 Dc(0) at T50 to D05Ds in the neighborhood ofTc .
Scattering off thermal excitations will, of course, induce
finite lifetime for the quasiparticle at finite temperatures.

Neither a charge soliton nor a spin soliton can hop fr
one chain to the next, but a hole can. The problem of
transverse dispersion of the coherent peak in the single
spectral function is addressed in Appendix A. Not surpr
ingly, we find that the effective interchain hopping matr
elementt' is replaced by an effective interchain hoppin
matrix element,

t'
e f f5Z~k!t' . ~61!

Thus the dispersion of the coherent peak transverse to
chain direction is an independent measure of the degre
interchain coherence.

C. The two spin soliton sector

To computeS, we need to study states in theNs52 sec-
tor. Interestingly ~in contrast to the case of an ordere
CDW!, in a quasi-one-dimensional superconductor, the 2kF
spin-density wave operator also creates two charge anti
tons:Nc522. Again, for the most part, the spin fluctuation
are fast and high energy compared to the scale of the ch
fluctuations, and can thus be treated in the adiab
approximation—indeed, they are little affected by the pr
ence of the interchain Josephson coupling. However, th
are two low-frequency modes associated with the soli
translational degrees of freedom, which must be treate
the antiadiabatic approximation. Consequently, we obtain
effective Schro¨dinger equation governing the center of ma
motion of the two spin solitons:34

He f f'2Ds2
1

2M* (
j 51

2
]2

]xj
2 1V~x12x2!, ~62!

wherexj is the position of solitonj,

M* 5Ds /vs
2 , ~63!

and V is the adiabatic spin soliton potential, obtained
integrating out the~relatively fast! fluctuations of the charge
degrees of freedom.

To computeV(R), we again rely on the analogy betwee
the refermionized version of the charge part of the Ham
tonian and solitons in polyacetylene,31,32,35In this case,V(R)
is recognized as the difference in the ground-state energ
-
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a massive Dirac fermion in the presence and absence
pair of zero width solitons separated by a distanceR, i.e., the
Hamiltonian in Eq.~39! with

D̃c→D̃c sgn~4x22R2!. ~64!

Since 2Nc522, this energy difference is to be computed
the fermion number21 sector.

From the results in the previous section, it follows tha

V~R!→Dc as R→`, ~65!

since in this limit, the two solitons are noninteracting, a
reduce to the solution discussed in the previous sect
Similarly, since forR50, the energy approaches that of th
uniform system with fermion number21,

V~R!→Dc as R→0. ~66!

Moreover, from simple scaling, it is clear that

V~R!5Dc@11v~R/jc!#, ~67!

where v(x) is independent of the magnitude ofDc and
v(x)→0 for x→0 and x→`. For intermediateR/jc , we
have been unable to obtain an analytic expression forv,
although it is easily derived numerically, as described in A
pendix C, with the result shown in Fig. 1. As can be se
v(x) rises from 0 to a gentle maximum atx'0.3 where
v(0.3)'0.2, and then drops exponentially back to zero
large separation.

What this means is that there is no true bound state in
spin-1 excitation spectrum. The spin-1 excitations, even
the superconducting state, are always unstable to decay
a pair of far separated spin-1/2 quasiparticles. However, n
the threshold energy,v52Ds1Dc , there is a nearly bound
~resonant! state with a lifetime which is exponentially long
Treating Eq.~62! in the WKB approximation, we see that th
decay rate of the resonant state is

G;exp@2B~vc /vs!ADs /Dc #, ~68!

whereB is a constant of order 1.

FIG. 1. The scaled version of the adiabatic potentialv(x), de-
fined in Eq.~67!, computed from the SSH model in a system of si
3000 sites with open boundary conditions. The different curves
for different magnitudes of dimerization corresponding to a coh
ence length of the indicated magnitude in units of the lattice c
stant.
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Using the fact thatS;L21/Kc in the absence of a charg
gap and utilizing the same scaling arguments applied pr
ously to the coherent piece ofG,, it is easy to see that th
weight associated with this resonant state is proportiona
Dc

1/Kc21 . However, because the barrier height is small co
pared toDc , the thermal decay of the resonant bound st
will become large, due to activation over the barrier, a
temperature well belowTc .

D. The ‘‘BCS-like case’’: No pre-existing spin gap

When there is no spin gap on the isolated chain and th
are repulsive interactions in the charge sector, the interc
Josephson coupling is perturbatively irrelevant. Thus
usual case for a quasi-one-dimensional superconductor i
already analyzed case with a pre-existing spin gap. Howe
it is worthwhile considering the case~with Kc,1) in which
both the spin gap and the superconducting coherence
induced by a relevant interchain Josephson coupling. T
case, even though quasi-one-dimensional, is much more
to the usual BCS limit, in that there is a single gap scale
the problem, and pairing~gap formation! and superconduct
ing coherence occur at the same temperature and
roughly the same energy scale. This case has been ana
extensively in the literature.36–38 It should be noted, how-
ever, that here, too, since the ‘‘normal’’ state is a non-Fe
liquid, the coherent piece of all spectral functions will b
strongly temperature dependent belowTc , and vanish in the
neighborhood ofTc .

V. SUMMARY AND IMPLICATIONS FOR EXPERIMENT

In this paper, we have obtained explicit and detailed
sults for the properties of the superconducting state o
quasi-one-dimensional superconductor. We have studied
problem as a quantum critical phenomenon, in which
quantum critical point is reached in the 1D limit of no inte
chain coupling, and hence we have treated the interch
Josephson coupling as a small parameter. In particular
expect~as discussed below! that the results are pertinent t
underdoped and optimally doped high-temperature super
ductors, where self-organized stripe structures render the
tem locally quasi-one-dimensional.

It is often argued that, even in fairly exotic circumstanc
and even when the normal state is a non-Fermi liquid,
superconducting state itself is fairly conventional and BC
like. We have shown that there are a number of ways
which this expectation is violated. In the first place, there
two ‘‘gap’’ scales, Ds@Dc , whereas in a BCS supercon
ductor there is one,D0, and correspondingly two correlatio
lengths,js and jc , in place of the one,j0, of BCS theory.
However, both gaps are, in a very real sense, supercond
ing gaps:Ds is associated with spin pairing~i.e., a nonzero
value of^Cs,1

† Cs,21&) and the existence of a local amplitud
of the order parameter.Dc is a measure of interchain phas
coherence. In the case in which there is a pre-existing s
gap on the isolated chain,js remains finite at the quantum
critical point, whereasjc diverges. The same holds true
the superconducting phase, a bit away from the quan
critical point, wherejc diverges atTc , while js remains
finite.33
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It is perhaps worth noting that many of these aspects
the superconducting state are considerably more general
the particular model we have solved. Indeed, recently, Le39

derived similar results from the gauge theory formulation
a flux phase to superconductor transition. While this deri
tion presupposes rather different seeming microscopic ph
ics, it does build in the doped insulator character of the
perconducting state, which is the essential feature of
results. Likewise, many features we have discussed here
a close resemblance to the dimensional crossover fro
conjectured 2D non-Fermi liquid to a 3D superconductor
visaged in the context of the interlayer tunneling mechan
of high-temperature superconductivity.40

A. Summary of results

For the benefit of the reader who skipped the techn
exposition, we begin by summarizing our most importa
results. We consider here the case in which there is a
existing spin gap,Ds/2@Tc , on an isolated chain, and w
focus on the effects of the interchain Josephson coup
between stripes at lower energies.

1. Thermodynamic effects

The effect of the interchain Josephson coupling is to p
duce an interchain coherence scaleDc(T). At mean-field
level, Dc(T) vanishes for anyT aboveTc , and while fluc-
tuation effects will produce a small amount of rounding
this behavior, because of the large coherence lengths a
the chain the degree of rounding will always be small in t
quasi-1D limit. It is the coherence scale that determinesTc ,
in the sense that

Tc'Dc~0!/2!Ds/2. ~69!

@Dc is expressed in terms of the strength of the Joseph
tunneling matrix elements in Eq.~47!.# The superfluid den-
sities in the directions transverse and parallel to the ch
direction are, respectively,

k'52au0Dc
2/vc , k i5vcKc, ~70!

whereu0 is a constant@see Eq.~44!# which depends weakly
on parameters,d is the spacing between chains,vc is the
charge velocity, andKc is the charge Luttinger parameter. I
two dimensions, if, on average, there is a fourfold rotatio
ally invariant mixture of domains in which the chains ru
along thex and y directions, respectively, the macroscop
superfluid density is isotropic and given by

k̄~T!5Ak'k i;Dc~T!. ~71!

2. Single hole spectral function

The common theme in the spectral functions is that
dependence on the interchain coupling~and hence all impor-
tant temperature dependences in the neighborhood ofTc) are
expressible in terms of the single coherence scaleDc . More-
over, it is the spectral weight of the coherent features in
spectrum, rather than their energies, which are strongly t
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perature dependent! This is very different from the behav
of the spectral functions nearTc in a three-dimensional BCS
superconductor.

Characteristic shapes of the single hole spectral func
above and belowTc are shown in Fig. 2. AboveTc , the
single hole spectral function is a broad incoherent peak.
low Tc , there is a coherent delta-function piece and a m
tiparticle continuum at higher energy,

G,~kW ,v!5Z~ki!d@v2E~kW !#1Gmulti, ~72!

where

E~kW !5Avs
2ki

21D0
212t'Z~ki!cos~k'a!1 . . . . ~73!

HerekF1ki andk' are, respectively, the components of t
crystal momentum parallel and perpendicular to the ch
direction.

The energy gap for the coherent peak is

D0~T!5Ds1
1

2
Dc~T!, ~74!

and its spectral weight is given by

Z~k!;@Dc~T!#2gc11/2. ~75!

ThusZ(k) ~and with it the transverse bandwidth! is the most
strongly temperature-dependent feature of the spectral f
tion.

The multiparticle incoherent pieceGmulti starts at a
threshold energyE(kW )12Dc(T). This is the origin of the gap
between the coherent peak and the incoherent shoulde
Fig. 2. Various forms of damping, including phase fluctu
tions transverse to the stripes, will broaden this structu
leading to a peak-dip-shoulder form of the spectral functi
However, the distance from the coherent peak to the
should be proportional toDc(T) and hence, atT50, to Tc .

FIG. 2. The temperature evolution of the spectral function. T
dashed line depictsG,(kF ,v) at temperatureT5Ds/3.Tc , and is
calculated using the parametersgc50.3, Ks51/2, andvs /vc50.2.
The solid line represents the spectral function at zero tempera
A coherent d-function peak onsets nearTc at energyD05Ds

1Dc(0)/2. Here we assumeDs /Dc(0)55. The multiparticle piece
starts at a threshold 2Dc(0) away from the coherent peak. Th
exact shape of the incoherent piece atT50 is not calculated in the
present work and is meant to be schematic.
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3. The spin response function

The spin response function is entirely a multiparticle co
tinuum; even belowTc , we find that any spin-1 mode i
unstable to decay into two spin-1/2 ‘‘quasiparticles.’’ How
ever, at low temperature, we find that there is a spin-1 re
nant state with an exponentially long lifetime near the thre
old energy 2Ds1Dc52D0, with momentum 2kF , wherekF
is the Fermi momentum on a stripe. Even here, because
barrier to decay is quantitatively small compared toTc , we
expect that no sharp resonant state will appear in the s
trum in the neighborhood ofTc . Rather, it will appear as the
temperature falls belowT'0.2Dc(0)'0.4Tc .

B. Implications of two scales

The existence of two scales in the superconducting s
appears in different experiments in fairly obvious ways:

~i! Since an electron has spin and charge, the gap m
sured in single particle spectroscopies, such as ARPES
tunnelling, is D05Ds1(1/2)Dc(T) @see Eq.~56!#. Mani-
festly, this gap scale decreases slightly with increasing te
perature, but remains large, roughlyDs , aboveTc . The gap
scale Ds is unrelated toTc , and moreoverDs(T50)
@2Tc , which physically is the statement that the onset
phase coherence,not pairing, is what determinesTc . Conse-
quently, the zero-temperature superfluid density is a be
predictor7,8 of Tc than D0(T50) @see Eq.~49! and subse-
quent discussion#. Similarly, pure spin probes, such as NM
or neutron scattering, see a gap which is approximatelyDs
per spin 1/2@see Eqs.~62!#.

~ii ! Experiments involving singlet pairs of electrons, su
as Andreev tunneling, could exhibit33 an energy scaleDc ; a
scale, moreover, which vanishes at~or near! Tc , and is re-
lated in magnitude toTc in a more or less familiar manner
Dc(0)/2;Tc . More complicated spectroscopies, such as S
tunneling~e.g., tunneling across a break junction! should re-
veal gap-like features with both energy scales,Ds andDc .

~iii ! The existence of two correlation lengths implies th
different measurements will find the order-parameter mag
tude depressed over distinct distances: If an impurity
stroys the superconducting gap locally, the single-part
density of states, as determined, for instance, with a scan
tunneling microscope, will basically recover over a leng
scalejs ~although, subtle effects will persist out to a sca
jc). By contrast, the magnetic-field strength near the core
a vortex, which otherwise would diverge logarithmically
short distances, is reduced inside a ‘‘core radius’’ due to
fact that the superfluid density is depressed~i.e., there is a
lower current density per unit phase gradient!. Since this
latter effect involves only charge motion, the vortex co
radius is of orderjc . This ‘‘magnetic’’ core radius is mea
sured, in principle, in muon spin rotation (mSR).41

~iv! The superconducting state reflects the non-Fer
liquid character of the normal state in many ways, but it h
a complex scalar order parameter as in a conventional~BCS!
superconducting state. This means that wemight expect
well-defined elementary excitations with the quantu
numbers25–27of the electron quasiparticle, as indeed we ha
found. However, in a conventional superconductor, the q
siparticle energy is shifted by the opening of the gap, and
lifetimes of all elementary excitations~as observed, e.g., in

e
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ultrasonic attenuation! are strongly temperature depende
belowTc . In the present case, it is thespectral weightasso-
ciated with the elementary excitations which is strongly te
perature dependent, not the lifetime or the energy. Moreo
even asT→0, the quasiparticle weight remains small,
proportion to a positive power of the distance from the qu
tum critical point; see Eq.~75!.

C. Two scales in the high-temperature superconductors

It has been noted,42,43 in the so-called ‘‘Yamada plot,’’
that Tc in underdoped high-temperature superconductor
proportional to the observed incommensurability44,45 in the
low-energy spin structure factor. The magnetic incommen
rability p/d is inversely related46,47 to the mean separatio
between charge ‘‘stripes’’d. Thus the Yamada plot implie
thatTc is inversely proportional to the mean spacing betwe
stripes; as the stripes become more separated, and the
tronic structure becomes more one dimensional,Tc→0. This
observation strongly supports the idea that the anoma
electronic properties of these materials reflect the prope
of nearby phases of the 1DEG. Indeed, many of the spe
features listed above have been observed, with various le
of confidence, in experiments on the high-temperature su
conductors:

~i! The best single particle spectra~ARPES and tunneling!
exist for Bi2Sr2CaCu2O8 because it cleaves easily. For u
derdoped and optimally doped materials, the single-part
gap as measured by tunneling and ARPES~Ref. 48! is found
to be large:D0>35 meV, in the ‘‘flat-band’’ region near the
M̄ , or (p,0) and (0,p), points of the Brillouin zone. (D0/2Tc

lies in the range 2 to 6. TheM̄ region is where the maximum
of a d-wave superconducting gap is expected.! The gap
persists49 in some form or other to temperatures well abo
Tc . Moreover,D0 increases with underdoping whileTc de-
creases. This gap is quite clearly a superconducting ga
that it has~at low T) the characteristicd-wave form50 ex-
pected of the superconducting gap, and it evolves51 smoothly
with overdoping into a gap of only slightly smaller magn
tude which opens, in a more conventional manner, in
neighborhood ofTc . ~We focus on the gap near theM̄ point,
especially, because there are both theoretical52 and
experimental53 reasons to think that the ‘‘flat-band’’ region i
associated with states in ‘‘stripes’’ or ‘‘fluctuating stripes.’!
Moreover, as discovered by Uemura and co-workers,7 Tc is
roughly proportional to the zero-temperature superfluid d
sity for underdoped materials, consistent with the notio8

that it is phase ordering, not pairing, which determinesTc .
~ii ! Deutscher54 has argued that the gap scale determin

by low-temperature Andreev tunneling spectroscopy is c
siderably smaller than that determined from single-part
tunneling measurements in underdoped materials, while
two gap scales approach each other in overdoped mate
This issue is well worth revisiting in more detail. The singl
particle gap scale is strongly apparent55 in SIS tunneling
spectra—we do not know of any convincing analysis wh
reveals the smaller charge gap scale in such experimen

~iii ! The vortex core radius has been measured with b
scanning tunneling microscopy56,57 ~STM! and mSR.41 The
mSR study measures the magnetic-field distribution in
material, and infers the core radius from the high-field cut
t
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of the distribution. For large applied fields (B;6T), both
methods are in rough agreement that the core radius is a
15 Å. However, the core radius deduced from themSR mea-
surements is strongly field dependent, so that at low fie
(B;0.5T) it yields a core radius around 120 Å. By contra
preliminary evidence58 from STM experiments suggests th
the core radius measured by that method is not strongly fi
dependent, so that, in low fields, the results of the two me
ods differ by almost an order of magnitude. However, th
appear to be differences in the STM results of differe
groups.57 Certainly, the core radius inferred from STM
studies59,60 of the gap suppression in the vicinity of an im
purity at zero magnetic field are suggestive of a rather sh
coherence length. While the experimental results are, by
means, definitive, we would tentatively like to explain th
discrepancy between the STM andmSR results at low field
as evidence of the existence of two coherence lengths in
superconducting state.

~iv! It has been realized for a long time that there are
sharp quasiparticle features in the ARPES spectrum nea
superconducting gap maximum~near theM̄ point of the Bril-
louin zone! in the normal state, and it has been argued61 that
they disappear due to a lifetime catastrophe which occur
the temperature is raised aboveTc . Recent4,5 high-resolution
ARPES measurements in optimally doped Bi2Sr2CaCu2O8
have revealed a an interesting picture of the emergenc
these peaks. Within experimental resolution, neither the
ergy nor the width of the peak changes as the temperatu
raised from well belowTc to slightly aboveTc ; rather, it is
the intensity of the peak that is strongly temperature dep
dent in the neighborhood ofTc . The intensity vanishes
slightly aboveTc , without any apparent change in the sha
of the peak itself. Indeed, the sharp temperature depend
of this intensity in the neighborhood ofTc is consistent with
its being proportional to a fractional power of the~local!
superfluid density @see Eq. ~75!# or from a different
perspective62 to a fractional power of the condensate fracti
@see Eq.~51!#. Additional evidence for this comes from a
old observation of Harriset al.63 that, as a function of under
doping, the weight in the peak at low temperatures decrea
with decreasing superfluid density. Moreover, Shen a
Balatsky64 have argued that a small dispersion of the ARP
peak in the direction perpendicular to the putative stripe
rection scales more or less withTc , consistent with our Eq.
~61!. The distance between the coherent peak and the
feature in ARPES curves near theM̄ point65 decreases with
underdoping, consistent with the zero- temperature dista
being proportional toTc .

A similar temperatureevolution has been observed for th
so called ‘‘resonant peak’’ in neutron scattering6 in
YBa2Cu3O72d and Bi2Sr2CaCu2O8 ~although no such fea
ture has been seen66 in La22xSrxCuO4). We would like to
identify this phenomenon, as well, with a dimensional cro
over of the sort discussed here. However, the spin reson
we have found in the present model is clearly not direc
related to the observed resonant peak. In particular, all
tures we have found are peaked at a momentum 2kF , while
the resonant peak is centered on the antiferromagnetic w
vector (p,p). Moreover, the peak we have found disappe
through a lifetime catastrophe well belowTc , while the reso-
nant peak is sharp immediately belowTc . Clearly, at the
very least, to have a theory with anything more than a v
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rough caricature of this observed magnetic behavior,
need to expand the considered model to include the effec
the antiferromagnetic ‘‘strips’’ between the ‘‘stripes.’’

D. Further implications for high-temperature superconductors

Finally, we end with a few additional observations co
cerning insights into the behavior of the high-temperat
superconductors that can be obtained from the analysi
this paper:

In the superconducting state of a structurally quasi-
superconductor, we have found there are two emerg
length scales,js andjc . If the quasi-1D electronic structur
is self-organized, as it is in the high-temperature superc
ductors, there are potentially two additional emergent len
scales:67 the mean spacing between stripes,d, and the persis-
tence length of the stripes,jstripe . d can be determined di
rectly from the charge incommensurability46,68 ~or
indirectly46,47 from the spin! structure factor.jstripe is much
harder to determine experimentally, although it is bound
below by the correlation length of the magnetic order.69,70So
long asjstripe is the longest length scale in the problem, i.
so long asjstripe@jc , it is possible to assume, as we ha
here, that the superconducting properties of the system
quasi-one-dimensional. Where this inequality is violated,
correct theory of the superconducting state needs to be
nificantly modified. As was pointed out previously,13 so long
as the weaker condition,jstripe@js , is satisfied, it is pos-
sible to have a one-dimensional theory of spin gap form
tion. At present experiments are unclear about the rang
doping and materials for which either of these inequalitie
satisfied, which is the most important source of uncertai
in the application of these ideas to the high-temperature
perconductors. Certainly, with sufficient overdoping, t
stripes lose their integrity and the application of these id
becomes suspect.

To get a feeling for magnitudes, we can make rou
quantitative estimates of the remaining length scales fr
well-established experimental data in the high-tempera
superconductors, although numbers vary from materia
material, and as a function of doping concentrationx. The
spin velocity in the undoped antiferromagnet is aroundvs
'0.8 eV Å, and the superconducting gap isD0'35 meV, so
js;20 Å. The charge coherence lengthjc5js(vc /
vs)(Ds /Dc), so if we estimatevc /vs;t/J'2 – 3 andDc
'2Tc'16 meV, we find that characteristicallyjc;100–150
Å. ~This is in good agreement with themSR measurement41

of the vortex core radius cited above.! The spacing between
stripes is in the range of four or more lattice constantsd
;16 Å.

A crossover magnetic field, which can be identified a
mean field71 Bc2, can be estimated as the field at which the
is one vortex per coherence lengthjc between each pair o
neighboring stripes; this leads to an estimate

Bc2;f0 /jcd, ~76!

where f05hc/2e is the superconducting flux quantum
While Bc2 estimated in this fashion is quite large (f0 /jcd
580T for d516 Å andjc5100 Å! it is small compared to
the characteristic magnetic field,
e
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Bs;2f0 /jsw, ~77!

at which orbital effects lead to the destruction of the sp
gap. Here,w is the ‘‘width’’ of a stripe—i.e., the width of the
1d region involved in spin gap formation. In the ‘‘spin ga
proximity effect’’ mechanism13 proposed previously this
would imply thatw is one to two times the crystalline lattic
constant. The extremely large value ofBs rationalizes the
lack of any observable reduction of the spin gap tempera
in the recent NMR experiments of Gornyet al.72 up to fields
as high as 12 T in YBa2Cu3O72d . ~See, also, the discussio
in Ref. 73.!

One important difference between a stripe phase and
array of chains studied here, is that in the stripe phase th
are additional electronic degrees of freedom which live in
antiferromagnetic strips between the stripes. The tw
component nature of the electronic structure of dop
antiferromagnets,74 is characteristic of the microphase sep
ration physics that gives rise to this state. Of course,
antiferromagnetic strips are themselves quasi-o
dimensional magnets,75 so that any magnetic ordering mu
be viewed, in similar spirit to that considered here, as res
ing from a dimensional crossover. Indeed, it is certainly
spins in the insulating strips that make the dominant con
bution to the ‘‘resonant peak’’ observed in neutron scatt
ing. A detailed theory of this peak is beyond the scope of
present model, but is embodied in the spin gap proxim
effect.13

However, we have found an additional neutron scatter
resonance for a quasi-one-dimensional superconduc
While the dimensional crossover causes no bound state in
spin-1 excitations, we find a resonant state of two spin1

2

quasiparticles appearing belowT'0.4Tc . The mode appears
at an energy 2Ds1Dc52D0, or twice the single-particle gap
as measured by ARPES or tunneling, and at momen
2kF , wherekF defines the Fermi surface associated with
stripe. Since this is a four soliton resonance, it may be qu
tatively sensitive to deviations from the limitDc!Ds , so
that the resonance is likely to be most well defined in
underdoped region whereTc!D0.

Finally, we remark that the ARPES spectrum along t
symmetry direction from~0,0! to (p,p), i.e., along the ray
which is expected to pass through the node of ad-wave gap
function, is very different in character from that in theM̄ that
we have discussed. In clean samples of optimally do
Bi2Sr2CaCu2O8, there is a peak76,77 in the spectral function
both above and belowTc , and the peak reaches the Ferm
surface at a well defined ‘‘nodal point,’’ kWn
5(0.44p,0.44p). This peak does not exhibit the characte
istics of a quasiparticle peak,77 in that its width is always
larger than its energy; indeed, it seems to exhibit quant
critical behavior reminiscent of a Luttinger liquid. Moreove
there is no qualitative change77 in the temperature evolution
of this peak as the temperature is lowered from two or th
timesTc down to temperatures as low as at least 1/2Tc ; the
character of the nodal excitation seems to be remarkably
sensitive to the onset of superconductivity. By contrast,
optimally doped La22xSrxCuO4there is apparently78 no ob-
servable peak along the nodal direction, and indeed little
no spectral weight within about 0.5 eV of the Fermi energ
Indeed, recent neutron-scattering studies79 of the low-energy



r
n

ne
e
n
ed
y
d
er
ith
ta
ro
th

al

E
eg
a
85

lly
ie

o

e
o

se
a
in
p
tio
ai

ll

ve
n
y

the
of

icle

tiff-

the

en-

is

that

est
be-

mac-

-

3434 PRB 62CARLSON, ORGAD, KIVELSON, AND EMERY
magnetic scattering in the neighborhood of 2kWn have re-
vealed the existence of a clean spin gap at low temperatu
which is apparently inconsistent with the existence of a
gapless nodal quasiparticle excitations.

It is clear that whatever spectral response is observed
kWn is not associated with the vertical and horizontal strip
studied here, because a stripe wave vector does not spa
‘‘Fermi surface’’ along this direction. It could be associat
with diagonal stripes, which have been observed recentl
various insulating materials,80,81 in which case the observe
quantum critical behavior might truly be that of a Lutting
liquid. An alternative picture is backflow associated w
holes that have not condensed into vertical or horizon
stripes. Both explanations are conceivable as there are st
reasons to expect that the orienting potential, which locks
stripes along a particular~vertical or horizontal! crystallo-
graphic direction to be stronger in La22xSrxCuO4 than in
Bi2Sr2CaCu2O8. However, other sources of quantum critic
behavior are certainly possible.82 We will defer further dis-
cussion of these classes of excitations to a future study.
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APPENDIX A: THE EFFECT OF INTERCHAIN
SINGLE-PARTICLE HOPPING

Until now, we have ignored single-particle hopping b
tween chains. This is because, especially in the presence
spin gap, it is irrelevant in the renormalization-group sen
However, in the superconducting state, we expect the qu
particles to be able to propagate coherently between cha
Because these terms are irrelevant, their effects on the s
trum can be computed in ordinary degenerate perturba
theory. It is easy to see that to first order in the interch
hopping, the quasiparticle energy is

E~kW !5Avs
2ki

21D0
21Z~ki!e

(')~kW'!1O~e (')!2, ~A1!

wheree (')(kW')52t' cos(k'a) is the interchain contribution
to the quasiparticle dispersion, andki1kF and kW' are, re-
spectively, the components of the crystal momentum para
and perpendicular to the chain direction.

This is highly reminiscent of the spectrum we would ha
obtained were we to compute the spectrum of a quasi-o
dimensional superconductor using BCS mean-field theor

E kW
(BCS)

5A@vFk1e (')~kW'!#21D2

5E k
(BCS)1@vsk/E k

(BCS)#e (')~kW'!1O~e (')!2,

~A2!
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with the differences that the Fermi velocity is replaced by
~slower! spin velocity, the superconducting gap is the sum
the ~single-chain! spin gap and the~interchain! charge gap,
and the interchain bandwidth is reduced by the quasipart
weight factorZ.

APPENDIX B: MACROSCOPIC SUPERFLUID DENSITY

In this appendix, we compute the macroscopic phase s
ness~superfluid density! tensorKab@k# in two dimensions
(a5x,y) given a microscopic distribution of the~in general
anisotropic! local phase stiffness tensorkab(rW). We include
the derivation here for pedagogical purposes, although
results exist elsewhere in the literature.83

k determines the relation between the local current d
sity, jW(rW) and the gradient of the phase according to

j a~rW !5kab]bu~rW !. ~B1!

From the equation of continuity, it follows that¹W • jW50, so
we can expressjW in terms of a potential,j a(rW)5eab]bf(rW),
so that

eab]bf~rW !5kab]bu~rW !. ~B2!

To computeKxx in a rectangular geometry, this equation
to be solved subject to the boundary conditions thatu50 for
x50 andu5Du for x5Lx ~independent ofy) and~from the
condition that no current can flow out of the sample in they
direction! f50 for y50 and f5DF for y5Ly . For a
given distribution ofk, we solve this equation for givenDu
to determineDf, from which we determineK according to

Kxx@k#5Df/Du. ~B3!

The key observation is the same potential and phase
satisfy Eq.~B3!, also satisfy the dual equation

eab]bu~rW !5kab
D ]bf~rW !, ~B4!

where

kab
D ~rW ![eackcd

21~rW !edb . ~B5!

Therefore

Kxx@k#Kyy@kD#51. ~B6!

We can apply this general result to the problem of inter
here. Consider the case of a square geometry in which,
cause of some assumed domain structure, the system is
roscopically isotropic (k̄[Kxx5Kyy) despite the existence
of microscopic anisotropy in each ‘‘stripe’’ domain. It fol
lows that

k̄~k' ,k i! k̄~1/k i,1/k'!51. ~B7!

It follows that k̄(k' ,k i)5Ak'k i. Other solutions to Eq.
~B7! exist, but are not homogeneous functions.
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APPENDIX C: THE EFFECTIVE POTENTIAL v„x…

To compute the effective potential which appears in E
~62!, we consider the discrete version of the refermioniz
Hamiltonian,84

H52(
n

@ t01~21!nD~n!/2#@cn
†cn111H.c.#, ~C1!

wherevc52t0 and

D~n!5Dc sgn~R224n2!, ~C2!

corresponding to a pair of solitons separated by a distancR.
~We have set the lattice constant equal to 1.!

We compute the ground-state energy on a system ofN
sites by computing the single-particle eigenvalues, and t
summing over the lowest lyingN21 of them to get the tota
energy as a function ofR. This is precisely the program
e
h

so

nd

d
d
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N.
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carried out previously to study various solitonic states in
Su-Schrieffer-Heeger model of polyacetylene.31,32,34 With
open boundary conditions, the Hamiltonian matrix is trid
agonal, and so particularly simple to study numerically
large system sizes. We have carried out this program num
cally for system sizes up to 2N53000, and forDc50.2, 0.1,
0.05, and 0.02; the continuum limit is obtained whenDc

→0. Even for the smallest values ofDc , we find no signifi-
cant finite-size effects at these large system sizes. The re
for v(x) computed in this way are summarized in Fig. 1. T
fact that the asymptotic value ofv is always slightly negative
is a reflection of the fact that in the limit of small solito
width ~which is equal to 1, the lattice constant, in the pres
calculation!, the soliton creation energy is a very strong
varying function of the width, as found previously b
Takayama, Lin-Liu, and Maki,32 and only approaches its tru
asymptotic limitDc/2, when 1/jc is extremely small.
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