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The one-dimensional electron gas exhibits spin-charge separation and power-law spectral responses to many
experimentally relevant probes. Ordering in a quasi-one-dimensional system is necessarily associated with a
dimensional crossover, at which sharp quasiparticle peaks, with small spectral weight, emerge from the inco-
herent background. Using methods of Abelian bosonization, we derive asymptotically correct expressions for
the spectral changes induced by this crossover. Comparison is made with experiments on the high-temperature
superconductors, which are electronically quasi-one-dimensional on a local scale.

In this paper, we consider the spectral signatures of dithe system is gapless, and as charge solitons with chafige
mensional crossover in the continuum theory of a quasi-oneand spin 0 when a charge gap is indudédhe precise mean-
dimensional superconductor. This problem is of interest in itsng of the soliton “charge” is a quantized unit of chirality;
own right and for application to materials which are struc-see Eq.(33) and the subsequent discussio8imilarly, the
turally quasi-one-dimensional, such as the Bechgaard sal&pin excitations of a spin-gapped system are spin solitons
(organic superconductgrdNe believe that it is also interest- with charge 0 and spin 1/2. When the elementary excitations
ing as a contribution to the theory of the high-temperaturedo not have the quantum numbers of the experimentally ac-
superconductors. Although structurally these materials areessible excited states, spectral functions do not exhibit sharp
quasi-two-dimensional, there is both theoretical and experipeaks corresponding to a well defined mode with a definite
mental evidenceof a substantial range of temperatures indispersion relatione = e(k). The single hole spectral func-
which “stripe” correlations make the electronic structure lo- tion G=(k,w), which is measured in angle-resolved photo-
cally quasi-one-dimensional, a phenomenon we have labelegimission spectroscogARPES), involves excited states with
“dynamical dimension reduction.” Similarly, the (EJ¥ or-  chargee and spin 1/2, which thus consist of at least one
ganic superconductors are two-dimensional doped antiferrasharge soliton and one spin soliton. The dynamic spin struc-
magnets, which we expect to show similar behavior. Moreture factorS(k, ), measured by neutron scattering, involves
generally, the high-temperature superconducting statexcited states with spin 1, which thus consist of two spin
emerges from a non-Fermi-liquid normal state, often with asolitons.(We will see in Sec. IV C that, in fact, the relevant
normal-state pseudogap. The quasi-one-dimensional supegxcited states contain two spin solitons and at least two
conductor is the only solvable case in which such an evolueharge antisolitons.
tion can be traced, theoretically. Below T, where the system is three dimensional, we will

A quasi-one-dimensional system can be thought of as ashow that the solitonic excitations of the 1DEG are confined
array of “chains,” in which the electron dynamics within a in multiplets with quantum numbers that are simply related
chain is characterized by energy scales large compared to the those of the electron. For the case of three-dimensional
electronic couplings between chains. Since a onecharge-density wave ordering, this has been known for some
dimensional system cannot undergo a finite temperaturéme. For the case of the superconductor, it is related to the
phase transition, any ordering transition with a finite criticalfact, noted recently by Salkola and Schrieftéhat either a
temperatureT ; is necessarily associated with a dimensionalspin soliton or a charge soliton inducesgrakink in the su-
crossover. The electronic properties at temperat(e®n-  perconducting correlations. As a consequence of confine-
ergies large compared td@, can be understood by ignoring ment, there is a finite probability of creating a final state
the interchain coupling, while at lower temperatures or enereonsisting of a single bound spin and charge soliton pair in
gies, the behavior is that of a three-dimensional system. an ARPES experiment. This will show up as a coherent

In the one-dimensional electron gd4DEG), as a conse- (delta-function piece in the zero temperatu@™ (k,w).
guence of spin-charge separation, the elementary excitations In this paper, we show that the coherent piece of the
are collective modes with unusual quantum numbers and tcsingle particle spectral functions has a weight which van-
pological properties: The charge excitations are best undeishes in the neighborhood @f; in proportion to a positive
stood as soundlike density-wave phaséms in dual repre- power of the interchain Josephson energy. It is this fact, that
sentation, superconducting quasi-Goldstone mpdasen  thespectral weighof the coherent piece is strongly tempera-
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ture dependent beloW,, rather than either the energy or the lem using Abelian bosonization, which is based on the fact

lifetime of the normal mode, which is the most notable fea-that the properties of an interacting 1DEG at low energies

ture that emerges from our analysis. It is highly reminiscenand long wavelength are asymptotically equal to those of a

of behavior observed in ARPERefs. 4 and band inelastic  set of two independent bosonic fields, one representing the
neutron-scatterirfgmeasurements on the high-temperaturecharge and the other the spin degrees of freedom in the sys-
superconductors. We have also identified a resonant featutem. The widely discussed separation of charge and%Hin

in the spin spectrum of a quasi-one-dimensional supercorin this problem is formally the statement that the Hamil-

ductor that emerges at temperatures well below tonian density}; can be expressed as
If the 1DEG remains gapless down 1@, the supercon-
ducting transition is BCS-like, in the sense that both pairing H=H.+Hs, (2

and phase coherence occur at the same time. In this case both

are induced by the interchain Josephson tunneling. We wilivhere the chain index is implicit, and the charge and spin
mainly be concerned with the case in which a sort of “pair- pieces of the Hamiltonian are each of the sine Gordon vari-
ing,” i.e., the opening of a spin gap >0, occurs in the €ty,

one-dimensionallD) regime well abovel, . In this caseT,

is primarily associated with phase ordering, and its scale is Vg 5 (Oxba)?
set by the superfluid densify rather than by the zero- Ha:? Kaldxba)™+
temperature single-particle gap scalg/2. In such circum-

stances the superconducting state, even at very low temperaherea=c,s for the charge and spin fields, respectivey,
tures, maintains a memory of the separation of charge anig the dual field tog,, or equivalentlyd,6, is the momen-
spin which is a feature of the 1D normal state. The uniqugum conjugate tap,. We consider a sufficiently incommen-
“coherence length” of a BCS superconductor is replaced bysurate 1DEG and therefore sét=0 since it arises from

+V, cog\8me,), (3

a

two distinct correlation length$a spin length £.=v¢/As, umklapp scattering. Of course, if the umklapp scattering is
where v is the spin velocity, and a charge length, crucial to explain doped insulator behavior, its role cannot be
=v./A., whereA .~ 2T.. neglected. Where there is no spin gap, or at temperatures

The remainder of the paper is divided into two self-large compared td g, we can likewise se¥/s=0.

contained parts; in Secs. |-1V we derive asymptotically ex- When Vg is relevant(perturbatively, this meank<1),

act results for the spectral properties of a quasi-onethe spin gap is dynamically generated, i.e., it depends both
dimensional superconductor in the limit of weak interchainon Vg and the ultraviolet cutoff in the problem,, according
coupling. In Sec. V, we summarize the principal results ando the scaling relatiom ¢~ v A[V/vA2]Y72K9 | At the
discuss their application to experiment, especially in thegapless fixed point, spin-rotational invariance requikes
high-temperature superconductors. The reader who is intee=1, at which pointVy is perturbatively marginal. It is mar-
ested only in results, not their derivation, can skip the interginally irrelevant for repulsive interaction&(>1) and mar-

vening sections. ginally relevant for attractive interaction&{<1). Thus the
The model we study is defined by the Hamiltonian long distance spin physics is described Hy with V=0
and Ks=1 for a gapless spin-rotationally invariant phase.
_ Where there is a spin gap in a spin rotationally invariant
H= dxH;+Hj, 1 o . . .
; f H, J @ system, it is exponentially small for weak interactions,

L . ~Wsexd —vA%27V].
where the sum runs over chairs; is the Hamiltonian of the In order to compute correlation functions, we use the

1DEG on chairj, andH, is the Josephson coupling between y1anqelstam representatiérof the fermion field operators
chains. In Secs. I-l1ll, we consider the single chain problem

(H;=0). The problem is formulated using Abelian — N exd inkex—id 4
bosonization in Sec. |. Next, we discuss the spectral func- U000 =N XHINKEX T Dy o), @
tions for the 1DEG withoutSec. I) and with (Sec. Il) &  \yhere A, contains both a normalization factéwhich de-
spin gap—explicit expressions for various quantities in theyends on the ultraviolet cutofind a “Klein” factor (which

presence of a spin gap are reported here. In Sec. IV, Wgan pe implemented in many ways that\/, anticommutes
extend these results to the case in which the most relevagfithn A/, for o+ 0o’ and commutes with it for=0". In
o .

interchain coupling is the Josephson tunneling. An adiabatigqgjtion,
approximation, which is exact in the limit whee;>A .,
replaces the spin-charge separation of the purely 1D problem _ B _
as the central feature of the spectrum—this section contains Pro= Va2[(8= N o) +o(0=Nbo)], ®)
our principal results. Applications to high-temperature superynere x = —1 for left moving electronsh=+1 for right
conductors are described i_n Sec. V. Various appendices ®fioving electrons, andr==1 refers to spin polarization.
pand upon the derivations in Sec. IV. From Eq.(4), it is a straightforwardand standari exercise
to obtain the boson representations of all interesting electron
|. ABELIAN BOSONIZATION bilinear and quartic operators. Physicalk, and ¢ are,
AND THE SPECTRAL FUNCTIONS respectively, the phases of thekR charge-density wave
(CDW) and spin-density wavéSDW) fluctuations, and,. is
We begin by considering the properties of a single chairthe superconducting phase. The long-wavelength compo-
in the absence of any interchain coupling; we treat this probnents of the chargep) and spin §,) densities are given by
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2ke 2 functions have a scaling form. Specifically, this impfiésat
p()=2 I oo™ — =\~ e, 3 e
\o ™ ™ G (K,w;T)=T 7Y "G~ (KIT,w/T;1), (17
1 . \F where we define fow=c or s
S.00=5 2 T o=\ 75 s .
ya=§(Ka+K;1—2), (12)

When analyzing results for this model, it is always impor-
tant to remember that the parameters which enter the fieldnd that so long ak =1,
theory are renormalized, and are related to the microscopic .
interactions in a very complicated manner. For instance, al- S(k,w;T)=TKs K2 S(Kk/T,w/T;1). (13
though for a single-component 1DEG with repulsive interac-
tions Vg is always irrelevant, for multicomponent 1DEG's,
and for the “1DEG in an active environment,” it is common
to find a dynamically generated spin gap, even when th

microscopic interactions are uniformly repulsitel® S:hl '? the ?Eﬁve exprﬁssuf)ns.t_ b red
The bosonized expressions for all electron operators are ' € T0rM O thése scaling functions can bé computed ana-

readily extended to an array of chains by adding a Chair!'ytically in many cases; this has recently been accomplish_ed
index to the Bose fields and to the Klein factors; the Klein'" Rﬁf' 17. Th%y ma;}y c;)r mc?y.g?]t gave a(lj.peak at energies
factors on different chains must now anticommute with eact?"'& cqmparel' .to tV\?h an r\:‘" t N epenklng on certain ex-
other. Where single-particle interchain hopping is relevzamtf,onent me_qua_ltfs. o ere t eret;s ahpea , :ioqgt;]rshat POSI-
the Klein factors appear explicitly in the bosonized Hamil- UVe €nergieso= v k+ (constJT, but the peak width, how-

tonian. Where only pair hopping and collective interactions€Ve! defined, does not narrow in proportion Toat low

between neighboring chains need be included in the low{€mpPeratures; such a peak does correspond to a quasipar-
energy physics, the Klein factors canceltin ticle.
While it is generally simpler to derive results concerning
the spectrum, it is important for comparison with experiment lll. INTERMEDIATE TEMPERATURE:
to compute actual correlation functions. Specifically, we will THE LUTHER-EMERY LIQUID

consider the transverse spin dynamic structure factor

Note that here, and henceforth, we will measkirelative to
ke and Xg, respectively, when computing the scaling func-
ions G= andS. If the system is spin-rotationally invariant,

WhenVg is relevant, the spin sine-Gordon theory scales to
Sy /Xt X " a strong-coupling fixed point, and the excitations are massive
ST =Sy (XD S (0.0)+ (S (XS (0.0),  (iitonc in whiche, changes byt 72 (ie., S,= + 1/2).
This problem is most simply treated in terms of spin fermion

where fields,
5 1 S g @ Wi =Nexdivmi2(0s— 2\ bg)]. (14)
Fo2 o0 Loter 7 The refermionized form of the Hamiltonian is then

and ther are Pauli matrices. We will also consider the one-

hole Green’s function, Hs= i;s[q’;r,—laxq’s,fl_ \P;r,laxq’s,ﬂ + Zs[\I’Z,llps,fl

~ +H.c]+gWl vl v, v, 15
G<(X,t)E<l/fil'T(X,t)dffl’T(O,O)>, (8) ] gS s1ts—-1%ts—-1%ts1 ( )
. . where
the singlet-pair correlator,
~ ~ 1
X O=(1(x0ly (GDY-1(0,01411(0,0), (9) vs=vs(m+'<s '
S
and the various spectral functior, G =, andy, obtained by
Fourier transforming these correlators. As a consequence of X :77_\/5
separation of charge and spii, G, andy are expressible SN

as a product of spin and charge contributions, and therefore,

S, G=, andy are convolutions. For instance, (16)

1
gS=27TUS<4—KS—KS .

dq dv
G=(kw)= o EGs(k_q""_ v) Ge(q,v). (10) For Ks=1/2, which is known as the Luther-Emery
point© the refermionized model is noninteracting and mas-
II. HIGH TEMPERATURE: LUTTINGER LIQUID sive, with a gapA ;=A. Assuming there is a single massive

BEHAVIOR phase of the sine-Gordon theory, the Luther-Emery ni8del
will exhibit the same asymptotic behavior as any other model
At temperatures large compared Tg and the spin gap, in this phase. Formally, the Luther-Emery point can be
Ag (or at all temperatures in systems in whi€g=A,=0),  thought of as a strong-coupling fixed point Hamiltonian, and
the 1DEG exhibits “Luttinger liquid” behavior. Because the g, which vanishes at the fixed point, is the amplitude of a
Luttinger liquid is a quantum critical system, the responseeading irrelevant operatdf. We will henceforth compute
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correlation functions at the Luther-Emery point, and then m(vgA)H227s

comment on the effects of deviations from this point. o=
Now, in computing the various spectral properties of the Iyl (yst2)

system, we can distinguish two regimes of temperature: at XO(w—vgK|). (23)

temperatures large compared AQ, the spin gap is negli- S

gible, and the results for the Luttinger liquid apply. If the Because the sine-Gordon field theory is asymptotically free,

temperature is small compared to the spin gap, then we cafe high energy spectrum, and hence the dependenGg of

compute the spin contributions to the various correlatioron A, is unaffected by the opening of a spin gap. With this

functions in the zero-temperature limit, and only make expoobservation, it is simply a matter of dimensional analysis to

nentially small errors of order exp(A¢/T). The spin piece of see that

the transverse spin response function can be expressed in

terms of the spin fermion fields Zo(K)= (A g2~ 2rsf (K&, (24)

(w+vk) s Hw—vk)rs 12

Sex,H)=(¥Lx, )W L (x,)¥s_1(0,0¥4(0,0). whereé,=v¢/A. is the spin correlation lengtli is a scaling
(17) function which is independent d€;. It can be calculated
sing the exact matrix elements available k= 1/2, with

Since the theory reduces, at the Luther-Emery point, to
e result

theory of free massive fermions, the corresponding spectre{
function can be readily computed with the result, Tor 0,

X
w?—4EZ(K/2) fs(x)zc( e

: (25

Ss(k,w)= — Ol w—2E4(k/2)],
4v5101E4(02) ~ Q2E<()| (19  Wherecis a numerical constant.
The above extends the earlier results of %biand
where the spin soliton spectrum is Wiegmanr?! In particular, the analytic structur@s a func-
tion of k and w) of the one soliton contribution to E¢22)
Es(k)= vakz"'Ag’ (19 reproduces that found in earlier work. Those works did not
and q,, are the solutions of the quadratic equatien discuss the nonanalyticity at_ the three soliton thr.eshold_,.al-
+Es(qj+ES(k+q)=0. Explicitly, though these are fairly obvious; more muted singularities
occur at the five and higher multisoliton thresholds, which
K o 4A2 we V\_/iII not discu_ss explicitly. The specif_ic expression in Eq.
OQro=mFts—\/ 1+ ——. (200  (24) is the most important feature of this result for the pur-
“ 2 2vus v2K%— w? poses of the present paper.

o o The charge pieces of both response functions are unaf-
The spin piece of the one hole Green’s function is morefected by the opening of the spin gap. Consequestignd
complicated, since it involves nonlocal operators in the reG< have power-law featureévhich can be a peak or a

fermionized form: shoulder depending oK.) at w=2E(k/2)+O(T) and w
~ + + =E4(k) + O(T), respectively, with a shape and temperature
Gs(x,1) =(Ug(x,n) W5 _1(x,t)¥s _1(0,0U4(0,0)), dependence, both readily computed, determined by the still

(21) gapless charge-density fluctuations. For example, we can
where the vertex operatod (x)=e 24 with ¢ (x) evaluate the spectral function explicithat T=0 in the limit

— J7l23s, [*dy®! W, . From kinematics, it follows that Vs/vc—0 [and for arbitrary w<3E(k/3)], or when |
this Green’s function consists of a coherent one spin solitori” s/ <As (for arbitraryvs/v.):
piece and an incoherent multisoliton piece:

) 1 B('Vc:')’c"' %)
Ge(k,0)=Z4(K) Sl w—Eg(k) ]+ G (k,w), (22) G=(k,w)=~+

4 Ly )l (ye+ %)

where the multisoliton piece is proportional t®[w
—3E4(k/3)]. (Deviations from the Luther-Emery point in X Z(K)[ w—Eg(k) 1?7 Y00 —E4K)].
the casegs>0 will result in the formation of a spin soliton- (26)
antisoliton bound state, a “breather,” which can shift the
threshold energy for multisoliton excitations somewhat. Here B(x,y) is the beta function. Again, the fact that these

At the Luther-Emery point it is possible to obtain closed- excitations are not quasiparticles is reflected in the fact that
form expressions for the matrix elements of the vertex op- even where peaks in the spectral function occur, they do not
erator between the vacuum and various multisoliton statesarrow indefinitely asr —0.
and from that to comput&g explicitly. We will report this In the presence of a spin gap, the spin contribution to the
calculation in a forthcoming paper, Ref. 17. Here, we use dong-distance behavior of the superconducting susceptibility
simple scaling argument, which can be generalized to thés a constant;
case of nonzero interchain coupling, to derive the principal
features of this result, especially the dependenceobn XX, 1) ~|(U2)|2(e 27 leix g~ 11270c(0.0))
Ag. In the absence of a spin gap, andTat 0, G can be o o
readily evaluated to give the scaling form ~(A &g Ks(e2mllulg=1\2m6:(0.0)y (27

AUC —1/2=2y,
3
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From this, one sees that, within a chain, one can identify Because of the presence of relevant cosine terms, there
(A &5 K2 as the “amplitude” andy27 6, as the “phase”  are superselection rules which divide Hilbert space into vari-

of the order parametér. ous soliton sectors. The soliton sectors are specified by two
integrals:
IV. LOW TEMPERATURE: -
THE 3D SUPERCONDUCTING STATE Ng= \/%f dXdydps= 217 [ ps() — ps( — )]
For temperatures of orddr, and below, interchain cou-
plings cannot be ignored. Single-particle hopping and all _zf d
X : ; . = XS, (32
magnetic couplings are irrelevant by virtue of the pre-
existing spin gap. FoK.>1/2, the Josephson coupling is and
perturbatively relevant, but foK.<1, the %z CDW cou-
pling is more relevant. For the simplest realizations of the o
1DEG, K. <1 corresponds to repulsive interactions between  N¢= \/%J dXdx 0= 2/ [ Oo() — O —0)].
charges. However, we have shdwit that for fluctuating or o 33

meandering stripes, such as occur in the high-temperature
superconductors, the CDW coupling gets dephased, so that N, is simply the number of spin solitons minus the num-
the Josephson coupling is the most relevant, even when 1fer of antisolitons or the total value 8f in units of#/2. The
<Kg<1. interpretation ofN. is a bit more subtle. Since we are look-
Since we are interested in the onset of superconductivitying at a superconducting state, the electrostatic charge of a
we consider the case in which the Josephson coupling bguasiparticle is not definéd-2" However,N, is a conserved
tween chains is more relevant. The pair tunneling interactiorchirality” equal to the number of right moving minus the
between chains, which appeared in Ef), can be simply number of left moving electrons, so that we can still interpret
bosonized: eN. as a sort of quasiparticle “charge”; it represents the
coupling of the quasiparticles to a magnetic ff%>2°
Hy=—Jsc>, | dx[AfA +H.c], 28) The presence of the CQ%(#S) term in the single chain
1) Hamiltonian results in the quantization f in integer units.
The presence of the cagm¢)cos(/2m6,) term in'H re-
sults in the quantization condition thBk+ N, be an even
.t .t N N integer! Physically, this means that excitations can have spin
AT )= p g T g4 # and charge 0Ns=2 andN.=0), spin 0 and charge 2
. (Ng=0 andN.=2), spin#/2 and charge 1N;=1 andN,
cog m%)exm‘/ﬁ%)' (29 =1), etc., but that all the exotic quantum numbers of the
and we have left the chain index implicit. soliton excitations of the isolated 1DEG are killed. Formally,
Since the state below, has long-range order, and since the addition of the pair hopping term to the Hamiltonian of
we assume that the coupling between chains is weak, it i§'¢ 1DEG leads to a confinement phenomenon. Along the
reasonable to treat it in mean-field approximafidajthough ~ €ntire_segment of chain between two spatially separated
we continue to treat the one-dimensional fluctuations ex-= \'/2 solitons, there is a change in sign of the pair hopping
actly. Thus, rather than considering a full three-dimensionalerm [see Eq.(29)]. This leads to an energy which grows
problem, we consider the effective single chain problem delinearly with the separation between solitons~ 7/x|, re-

where the pair-creation operator on chain nunjbisr

fined by the Hamiltonian gardless of whether they are charge or spin solitons or anti-
solitons.
H=Hs+H,— Jcog\2mps)cog\2m6,), (30) The importance of this observation becomes clear when

we study the operators in whose correlation functions we are
where 7 is related to the pair tunneling amplitude by the interested. Since

mean-field relation o TG0 d)s(y)e‘i 00 by \/E®(y—x),
J=23sd Al )% cog\2mps)cog\2mh,)),  (31) (34)

wherez is the number of nearest-neighbor chair&nce the and

average of cos(2m¢)sin(y276.) vanishes, no sine term el v“mqﬁc(x)ec(y)e—iv‘mqﬁc(x):ec(y)_l_ 720 (x—y),

appears in the effective Hamiltoni#R0).] Note that the pair (35)
hopping term in Eq(30) couples charge and spin, as is char- ) o
acteristic of higher dimensional couplings. it is clear that the fermion annihilation operatér_,; cre-

The mean-field approximation is exact in the limit of ates a spin antisoliton and a charge antisoliton, while the 2
largez and smallzJsc. In three dimensions, this mean-field Piece of the spin-raising operat@, _, creates a pair of spin
approximation will produce some errors in the critical re- solitons and a pair of charge antisolitons. Both these combi-
gime in the vicinity of T, but because of the long correla- nations decay into a set of free solitons in the absence of the
tion length along the chain just aboig, the critical region interchain coupling, but in its presence, the former becomes
is always small for smallgc, and well belowT,, this ap- a bound state, and the latter a resonant state. Tiusle-
proximation is safé? velops a coherent piece with a well defined dispersion rela-
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tion as superconducting phase coherence between chains dRecall that here the charge solitons are spinless fermions.
curs.S develops a resonant peak at a temperature well beloWhis expression emphasiZéshe fact that spin gap forma-
T.. tion, which is associated with the quenching of the fluctua-
tions of the spin-density phase, can also be identified
A. Zero-spin soliton sector with the growth of theamplitudeof the superconducting or-
der parameter. While the charge solitons clearly also make a
contribution to the amplitude of the order parameter, the
?)hase of the order parameter comes entirely from the charge.
For K,=1/2, just as for the Luther-Emery point for the
eSpin fields, the refermionized Hamiltonian for the charged

. : . > . Xcitations is noninteracting and massigapped, and A
can be treated in the adiabatic approximation. ~ 9 pped ©

In the ground stateN.=0) sector, the spin field fluctua- ='Ac. In computing the asymptotig form of correlations we
tions are little affected by+;; all spin correlations can thus will set K= 1/2. We can now readily compute the expecta-

be computed as in the previous section. Moreover, becaudin value of the pair hopping term so as to relate two physi-
of the spin gap, so long aE<A,, the spin fields can be cally important quantities: the excitation energy saajeand

approximated by their ground state. For computing theN€ interchain portion of the internal energy

charge part of the wave function, we can replace the operator AW Wt _
; ) . _,tH.c)= V2 \2m6
cos(y2m¢s) in H; by its expectation value at zero tempera- (VeaWe 1 +H.c)=Tcodv2mes)cog V2 b))

ture in the decoupled ground state, =(AméEHU(AL,T), (43

co V27 hs) (oS 2 mhs) Yo=Cs~ (A &) K2 (36)  Whereg.=v /A is the charge correlation length. Equation
(43) has the form of a BCS gap equation with

For the case in which the spin gap of the isolated chain
is large compared to the interchain coupling, the fluctuation
of the spin field are high energgfas) compared to any

where the subscript 8’’ refers to the expectation value in
the ensemble witlls: set equal to zerdsee also Ref. 29 veA 1 1 5

This leaves us with a sine-Gordon equation for the charge UO(Ach):f dx\/=ztan)‘(E\/XZ+ AC), (44)
degrees of freedom, with potential 0 X"+

where the mean-field relation fax.(T) is

JCscog\26,). (37)
Again, we solve this problem by refermionizin TV
9 P Y g Uo(Ae, T)=— CZZ. (45)
Wl =NeexdiVal2(6.— 2\ ¢o)]. (38) SCs
. o Consequently, we find the familiar BCS relations
The refermionized form of the Hamiltonian is
- : . T.=0.57A.(0), (46)
Hc:|Uc[\Pc,—lax‘Pc,—l_q,c,lﬁxqic,l]
A(0)=2v Aexd — 7vc/zIsL2], (47)

—A ¥l Wl +Hec]
A(T)=1.74A,(0)y1-T/T, for T=T,. 48
+gc‘I’I,1‘I’Ll‘I’c,71‘Pc,1, (39 (™) (0) ¢ ¢ 48

In general, the actual form df.(0) in terms ofJgc andCy is

where modified according to the microscopic valuekof.

The transverse superconducting phase stiffngsgpro-
5c=vc(m+ Kel, portional to the superfluid densjtys
Cc
Kk, =2ma(H;), (49
~ mJCs . . . L .
A= A whered is the spacing between chains afidl;) is given in

Eq. (43). Thus at zero temperaturq~T§/vC. As is shown
1 in Appendix B, for a system with equal areas of domains in
gczzm,c(__ Kc)- (40) which the stripes run along theandy directions, the mac-
4K roscopic phase stiffness is equal to the geometric mean of the

SinceN,=0, the superselection rule impliég=2m, which  Superfluid density in the directions parallel and perpendicular

upon refermionization is simply the condition to the chainsx= Vi« . Since the phase stiffness along the
chains is simplyx =v K, it follows that«(T=0) is (up to
-> )\f dx[\I'l W 1=Ng/2=m. (41) logarithmic corrections coming fromn,) simply proportional

) ' ' to T,. This is a microscopic realization of a more general

phenomenon which occurs in systems with low superfluid
It is also interesting to note that the superconducting paifdensity? it is phase ordering, as opposed to pairing, which
creation operator can be expressed in an intuitively appealingeterminesT,. In a future publicatior® we will study the
form in terms of charge soliton creation operators effects of quantum and thermal phase fluctuations on the
~ 4oy evolution of the superfluid density of a quasi-one-
Ateccog\2mep Wl Wi ;. (42 dimensional superconductor.
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With little additional effort, we can study the pair field or equal toA.. Importantly, since in this sectdfs= —1, the
susceptibility y at energies small compared taA2. In this  superselection ruldN.,=2m+ 1, requires that the fermion
low-energy limit, as in Eq{(27), we can replace the spin number is half integer!
operators iny by their ground-state expectation values.

The charge part of( can be expressed in terms of the _2 f dXi[lﬂTwc W] =N/2=m+ 1/2. (55)
charge fermion fields: ~ GATE
}C(X,t)=<‘I’Z,1(X,t)‘1’;,1(X,t)‘I’C,,1(0,0)‘1’@1(0,0)). This is essential, since with the midgap state occupied the

(50) fermion number i& +1/2, while with it empty the fermion
_ . number is—1/2. The midgap state is associated with the
At the free charge fermion poinK(=1/2) the correspond- bound state of the spin and charge antisolitons.

ing spectral function is readily evaluated, fo=0 and To compute the charge contribution to the soliton creation
<2Ag, with the result energy we need to evaluate the difference between the
5 ground-state energies of the charge Hamiltonian in the pres-
_[Gs4o ence and absence of a kink. We have done this by taking the
x(k,w)= (k) 8(w) - o . . ;
& limit of vanishing soliton width of a general expression of

o , . Takayama, Lin-Liu, and Maki? (and dividing by 2 for the
Cslo = 4EL(k/2)+2A7] W spinless cage The resulting soliton creation energy is just
4U§|Q1EC(Qz)—qZEc(Q1)| [o=2E:(k2)], A./2 ; in other words, the rest energy of the electron, i.e., the

bound state of a spin soliton and a charge soliton, is

(51)

whereE¢(k) andq, , are the analogs of Eq$19) and (20)
with A substituted forAg andv,, for vs.

Away from the Luther-Emery point, i§.>0 (K;<1/2),
the two solitons repel, and hence the effectgafcan be
ignored, but fog.<0 (K.>1/2), there is an attractive inter-
action between the two solitons and hence, this being after G=(k,w)=Z(k) [ w—EK) ]+ G M (k w), (57)
all a one-dimensional problem, they form a bound state. This
will slightly modify the expression fol. where

Ag=Agt+AJ2~Aq. (56)

From this discussion, we can immediately conclude that
for T<T,<Aq, the one hole spectral function has a coherent
piece and a multiparticle incoherent piece,

E(k) = JoZkZ+ A2, (59)

This follows from the fact that the bound state of a spin
soliton and a charge soliton has the same quantum numbers

B. The one hole sector

In the one soliton sector of the spin Hamiltonian, the adia
batic approximation requires reexamination. While for the SO ; .
most part, the spin modes are fast compared to the charg® & hole. The multiparticle pietehas a threshold slightly
modes, the Goldstone modganslation mode of the spin aPove the single hole threshold at=£(k) +24..
soliton) is slow compared to all other modes, and so must be 'he overlap factoZ(k) contains factors from both the
treated in the inverse adiabatic approximation. Thus we consPin and the_charge parts of the wave function; so long as
sider the charge Hamiltonian with a spin antisoliton at fixedkés<1, Z(K)=Z(k)Zs(0) whereZ,(0) depends on the spin

positionR. The pair tunneling term is then correlation length as in Eq24), andZ.(k) contains all re-
maining contributions. We can obtain a scaling form qr
JCssgnx— Rg)co\26y), (52)  using the same method of analysis employed previously for

) Z. Specifically, atT=0 in the absence of interchain cou-
where we have used the fact thiat=vs/A (which charac-  pjing, and forw<3A and |ké|<1, G= is given by the
charge correlation length§.=v./A;, to approximate the does not affect the high-energy physics, the dependence of

profile of the spin soliton by a step function. Upon refermi- < gn A is unaffected by the interchain coupling. Indeed, so
onization, the charge Hamiltonian is still of the same form agong asA <A, the dependence @< on Aq is likewise

Eq. (39) with the term proportional t&c replaced by unchanged. Thus, by dimensional analysis, it follows that
A.——A sgnx—Ry). (53) Z(k)=Z4(0)(A&e) M2 27eA, T(K&o), (59)
For K.=1/2, upon the canonical transformation, . . .
wheref is a scaling function and
— T =
'706,—1 l];’C,*]_’ {/,C,l \I}C,ll (54) A B B( yc’yc+ 1/2) 60
the charge soliton Hamiltonian is of the same fotmas the Yo T(y)T (ye+1/2) (60)

fermionic Hamiltonian of a commensurability two Peierls .
insu'ator’ “po|yacety|ene’” in the presence of a topologica' Unfortun~ate|y, we do not have exact results from which to
soliton. As is well knowr?! there is an index theorem that computef(x) explicitly, but there is no reason to expect it to
implies the existence of a zero energy bound state associatbéve any very interesting behavior for small

with the soliton, the famous “midgap state” or ‘“zero At temperatures betweeh=0 andT=T., the same ar-
mode.” All other fermionic states have energies greater thaguments lead to a simple approximate expression for the
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spectral function. Specifically, the principal temperature de-
pendence comes from. which is a decreasing function of
T. At mean-field level, the temperature dependenck ofan
be computed from Eq44). In particular, it vanishes at
according to Eq(48). Since fluctuation effects produce su-
perconducting correlations between neighboring chains a
temperatures abovE., this simple mean-field behavior will
be somewhat rounded, but the qualitative point thatbe-
comes small at temperatures abdveis quite robust.
Consequently, the quasiparticle weight which is pro-
portional toAi’CH/Z, is a strongly decreasing function of
which vanishes in the neighborhoodTf. The quasiparticle -0.10 : .
gap,A,, on the other hand, is only weakly temperature de- 0.0 1.0 20 3.0
pendent, dropping from its maximum valud,=Aq
+3A4(0) at T=0 to Ag=A; in the neighborhood of ;. FIG. 1. The scaled version of the adiabatic potentiat), de-
Scattering off thermal excitations will, of course, induce afined in Eq.(67), computed from the SSH model in a system of size
finite lifetime for the quasiparticle at finite temperatures. 3000 sites with open boundary conditions. The different curves are
Neither a charge soliton nor a spin soliton can hop fromfor different magnitudes of dimerization corresponding to a coher-
one chain to the next, but a hole can. The problem of thence length of the indicated magnitude in units of the lattice con-
transverse dispersion of the coherent peak in the single hoktant.
spectral function is addressed in Appendix A. Not surpris-
ingly, we find that the effective interchain hopping matrix @ massive Dirac fermion in the presence and absence of a

elementt, is replaced by an effective interchain hopping pair of zero width solitons separated by a distaR¢ee., the
matrix element, Hamiltonian in Eq.(39) with

tef=z(kt, . (61) A —A;sgr(4x®—R?). (64)

Thus the dispersion of the coherent peak transverse to theince N¢=—2, this energy difference is to be computed in

chain direction is an independent measure of the degree §fe fermion number-1 sector. o
interchain coherence. From the results in the previous section, it follows that

, ) V(R)—A, as R—x, (65)
C. The two spin soliton sector

since in this limit, the two solitons are noninteracting, and
reduce to the solution discussed in the previous section.
Similarly, since forR=0, the energy approaches that of the
P_niform system with fermion numbert 1,

To computeS, we need to study states in thg=2 sec-
tor. Interestingly (in contrast to the case of an ordered
CDW), in a quasi-one-dimensional superconductor, tke 2
spin-density wave operator also creates two charge antisol
tons:N.=—2. Again, for the most part, the spin fluctuations V(R)—A. as R—0. (66)
are fast and high energy compared to the scale of the charge
fluctuations, and can thus be treated in the adiabatidloreover, from simple scaling, it is clear that
approximation—indeed, they are little affected by the pres-
ence of the interchain Josephson coupling. However, there V(R =A[1+v(RI&)], (€7
are two low-frequency modes associated with the solitoyhere y(x) is independent of the magnitude df, and
translational degrees of freedom, which must be treated iy (x) 0 for x—~0 andx—. For intermediateR/&,, we
the antiadiabatic approximation. Consequently, we obtain aRave been unable to obtain an analytic expressionvfor
effective Schrdinger equation governing the center of massajthough it is easily derived numerically, as described in Ap-
motion of the two spin soliton%! pendix C, with the result shown in Fig. 1. As can be seen,

2 v(x) rises from O to a gentle maximum at=0.3 where

eff_ 1 J v(0.3)=0.2, and then drops exponentially back to zero at
HY =28 oue ,21 asz+v(xl X2), 62) large separation.
What this means is that there is no true bound state in the
wherex; is the position of soliton, spin-1 excitation spectrum. The spin-1 excitations, even in
. ) the superconducting state, are always unstable to decay into
M*=Aslvg, (63) a pair of far separated spin-1/2 quasiparticles. However, near

the threshold energyw=2A.+ A, there is a nearly bound
(resonant state with a lifetime which is exponentially long.
Treating Eq.(62) in the WKB approximation, we see that the
decay rate of the resonant state is

and V is the adiabatic spin soliton potential, obtained by
integrating out thdrelatively fasj fluctuations of the charge
degrees of freedom.

To computeV(R), we again rely on the analogy between
the refermionized version of the charge part of the Hamil- _ _ e
tonian and solitons in polyacetyleA&®2%|n this caseV(R) F~exd =B(ve/vd VAs/Ac ], (68)
is recognized as the difference in the ground-state energy afhereB is a constant of order 1.
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Using the fact thatS~ A~ ¢ in the absence of a charge It is perhaps worth noting that many of these aspects of
gap and utilizing the same scaling arguments applied previthe superconducting state are considerably more general than
ously to the coherent piece &<, it is easy to see that the the particular model we have solved. Indeed, recently®i ee
weight associated with this resonant state is proportional tderived similar results from the gauge theory formulation of
Ai‘lKCil_ However, because the barrier height is small com2 flux phase to superconductor transition. While this deriva-
pared toA,, the thermal decay of the resonant bound staté_ion presupposes rather different seeming microscopic phys-

will become large, due to activation over the barrier, at alcS: it does build in the doped insulator character of the su-
temperature well below . . perconducting state, which is the essential feature of the

results. Likewise, many features we have discussed here bear
a close resemblance to the dimensional crossover from a
conjectured 2D non-Fermi liquid to a 3D superconductor en-
When there is no spin gap on the isolated chain and thereéisaged in the context of the interlayer tunneling mechanism
are repulsive interactions in the charge sector, the interchaiof high-temperature superconductivify.
Josephson coupling is perturbatively irrelevant. Thus the
usual case for a quasi-one-dimensional superconductor is the
already analyzed case with a pre-existing spin gap. However, ] ) )
it is worthwhile considering the cagwith K.<1) in which For the benefit of the reader who skipped the technical
both the spin gap and the superconducting coherence af¥XPosition, we begin by summarizing our most important
induced by a relevant interchain Josephson coupling. Thisesults. We consider here the case in which there is a pre-
case, even though quasi-one-dimensional, is much more ak@¥isting spin gapA¢/2>T., on an isolated chain, and we
to the usual BCS limit, in that there is a single gap scale iffocus on the effects of the interchain Josephson coupling
the problem, and pairinggap formatiop and superconduct- between stripes at lower energies.
ing coherence occur at the same temperature and with
roughly the same energy scale. This case has been analyzed 1. Thermodynamic effects

i i i —-38 . . . .
extensively in the literatur° It should be noted, how-  The effect of the interchain Josephson coupling is to pro-
ever, that here, too, since the “normal” state is a non-Fermiyyce an interchain coherence scalg(T). At mean-field
liquid, the coherent piece of all spectral functions will be level, A.(T) vanishes for anyl aboveT,, and while fluc-
strongly temperature dependent beldy, and vanish in the  tation effects will produce a small amount of rounding to

D. The “BCS-like case”: No pre-existing spin gap

A. Summary of results

neighborhood offc. this behavior, because of the large coherence lengths along
the chain the degree of rounding will always be small in the
V. SUMMARY AND IMPLICATIONS FOR EXPERIMENT quasi-1D limit. It is the coherence scale that determifigs

. ) o ) in the sense that
In this paper, we have obtained explicit and detailed re-

sults for the properties of the superconducting state of a - .
guasi-one-dimensional superconductor. We have studied this Te=Ac(0)/2<Ad2. (69)

problem as a quantum critical p_henomenqn,_ n Wh'?h th(TAC is expressed in terms of the strength of the Josephson

guantum critical point is reached in the 1D limit of no inter- i irix elements in Eq47).] The superfluid den-

chain coupling, and hence we have treated the interchaiwnne!ng matrix e N p .
. . sities in the directions transverse and parallel to the chain

Josephson coupling as a small parameter. In particular, W ection are. respectivel

expect(as discussed belgwhat the results are pertinent to TSP Y

underdoped and optimally doped high-temperature supercon- ,

ductors, where self-organized stripe structures render the sys- Kk, =2aUpAc/ve, K =vcKe, (70

tem locally quasi-one-dimensional.

It is often argued that, even in fairly exotic circumstanceswhereuy is a constanfsee Eq(44)] which depends weakly
and even when the normal state is a non-Fermi liquid, th@n parametersd is the spacing between chains, is the
superconducting state itself is fairly conventional and BCS<harge velocity, ané is the charge Luttinger parameter. In
like. We have shown that there are a number of ways irfwo dimensions, if, on average, there is a fourfold rotation-
which this expectation is violated. In the first place, there areally invariant mixture of domains in which the chains run
two “gap” scales,A;>A., whereas in a BCS supercon- along thex andy directions, respectively, the macroscopic
ductor there is one), and correspondingly two correlation superfluid density is isotropic and given by
lengths,és and &, in place of the one¢,, of BCS theory.

However., bo_th gaps are, in a very real_ sense, superconduct- K(T) =i, k|~ Aq(T). (71)

ing gaps:A is associated with spin pairin@g.e., a nonzero
value of(¥{ W _,)) and the existence of a local amplitude
of the order parameteA . is a measure of interchain phase
coherence. In the case in which there is a pre-existing spin The common theme in the spectral functions is that all
gap on the isolated chais remains finite at the quantum dependence on the interchain coupliiagd hence all impor-
critical point, whereas; diverges. The same holds true in tant temperature dependences in the neighborhodd)cdre

the superconducting phase, a bit away from the quanturexpressible in terms of the single coherence sAaleMore-
critical point, whereé. diverges atT., while & remains  over, it is the spectral weight of the coherent features in the
finite 3 spectrum, rather than their energies, which are strongly tem-

2. Single hole spectral function
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_ 3. The spin response function

The spin response function is entirely a multiparticle con-
tinuum; even belowT., we find that any spin-1 mode is
unstable to decay into two spin-1/2 “quasiparticles.” How-
ever, at low temperature, we find that there is a spin-1 reso-

N nant state with an exponentially long lifetime near the thresh-
* old energy A + A .=2A,, with momentum Rr, wherekg
\ is the Fermi momentum on a stripe. Even here, because the
* barrier to decay is quantitatively small comparedltg we
expect that no sharp resonant state will appear in the spec-
435 3 35 5 5 O 03 (')‘ =05 trum in the neighborhood df .. Rather, it will appear as the
W/ As temperature falls below~0.2A,(0)~0.4T...

FIG. 2. The temperature evolution of the spectral function. The

- . ) B. Implications of two scales
dashed line depict& < (kg ,) at temperaturd=A//3>T,, and is

calculated using the parameteys=0.3, K,=1/2, andv/v.=0.2. The existence of two scales in the superconducting state
The solid line represents the spectral function at zero temperatur@ppears in different experiments in fairly obvious ways:
A coherent 5-function peak onsets nedf. at energyAg=Ag (i) Since an electron has spin and charge, the gap mea-

+A,(0)/2. Here we assum& /A (0)=5. The multiparticle piece sured in single particle spectroscopies, such as ARPES or
starts at a threshold&,(0) away from the coherent peak. The tunnelling, is Ag=A¢+(1/2)A.(T) [see Eq.(56)]. Mani-
exact shape of the incoherent piecelat0 is not calculated in the festly, this gap scale decreases slightly with increasing tem-
present work and is meant to be schematic. perature, but remains large, roughly, aboveT.. The gap
scale Ag is unrelated toT., and moreoverAy(T=0)

perature dependent! This is very different from the behavioe= 2T, which physically is the statement that the onset of
of the spectral functions nedy, in a three-dimensional BCS phase coherencapt pairing, is what determineg,. Conse-
superconductor. quently, the zero-temperature superfluid density is a better

Characteristic shapes of the single hole spectral functionr_},redictoi8 of T, than Ao(T=0) [see Eq.(49) and subse-
above and belowl. are shown in Fig. 2. Abovd, the  quent discussioh Similarly, pure spin probes, such as NMR
single hole Spectral function is a broad incoherent peak. Beor neutron scattering, see a gap which is approximmly
low T, there is a coherent delta-function piece and a mulper spin 1/2see Eqs(62)].

tiparticle continuum at higher energy, (i) Experiments involving singlet pairs of electrons, such
as Andreev tunneling, could exhiBitan energy scald.; a
G<(I2,w)=Z(k”)5[w—5(I2)]+Gm“'“, (72  scale, moreover, which vanishes(at neaj T, and is re-
lated in magnitude td@ . in a more or less familiar manner,
where A(0)/2~T,. More complicated spectroscopies, such as SIS
_ tunneling(e.g., tunneling across a break junctiamould re-
E(k)= \/vzk‘z‘ +A02+ 2t, Z(kjcogk,a)+ .... (73)  veal gap-like features with both energy scalés,andA..

(iii) The existence of two correlation lengths implies that
Herekg+k| andk, are, respectively, the components of the gifferent measurements will find the order-parameter magni-
crystal momentum parallel and perpendicular to the chainude depressed over distinct distances: If an impurity de-
direction. stroys the superconducting gap locally, the single-particle
The energy gap for the coherent peak is density of states, as determined, for instance, with a scanning
tunneling microscope, will basically recover over a length

_ 1 scale&, (although, subtle effects will persist out to a scale
Bo(T)=As+ EAC(T)’ (74 &:). By contrast, the magnetic-field strength near the core of
a vortex, which otherwise would diverge logarithmically at
and its spectral weight is given by short distances, is reduced inside a “core radius” due to the
fact that the superfluid density is depressed., there is a
Z(K)~[A(T)]27et 12 (75  lower current density per unit phase gradjeriince this

latter effect involves only charge motion, the vortex core

ThusZ(k) (and with it the transverse bandwidiiis the most  yadijys is of order,. This “magnetic” core radius is mea-
strongly temperature-dependent feature of the spectral fungyred, in principle, in muon spin rotatiop6R) **
tion. o _ ) i (iv) The superconducting state reflects the non-Fermi-

The multiparticle incoherent piec&™"™ starts at a |iquid character of the normal state in many ways, but it has
threshold energy(k) +2A.(T). This is the origin of the gap a complex scalar order parameter as in a conventi@@b)
between the coherent peak and the incoherent shoulder Buperconducting state. This means that maght expect
Fig. 2. Various forms of damping, including phase fluctua-well-defined elementary excitations with the quantum
tions transverse to the stripes, will broaden this structurenumber$®=2" of the electron quasiparticle, as indeed we have
leading to a peak-dip-shoulder form of the spectral functionfound. However, in a conventional superconductor, the qua-
However, the distance from the coherent peak to the digiparticle energy is shifted by the opening of the gap, and the
should be proportional ta,(T) and hence, af=0, to T,. lifetimes of all elementary excitation@s observed, e.g., in
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ultrasonic attenuationare strongly temperature dependentof the distribution. For large applied field8{ 6T), both
belowT.. In the present case, it is tispectral weighasso- methods are in rough agreement that the core radius is about
ciated with the elementary excitations which is strongly tem-15 A. However, the core radius deduced from tt8R mea-
perature dependent, not the lifetime or the energy. Moreovegurements is strongly field dependent, so that at low fields
even asT—0, the quasiparticle weight remains small, in (B~0.5T) it yields a core radius around 120 A. By contrast,
proportion to a positive power of the distance from the quanPreliminary evidenc from STM experiments suggests that
tum critical point; see Eq.75). the core radius measured by that method is not strongly field
dependent, so that, in low fields, the results of the two meth-
ods differ by almost an order of magnitude. However, there
appear to be differences in the STM results of different
It has been notet?*®in the so-called “Yamada plot,” groups:’ Certainly, the core radius inferred from STM
that T, in underdoped high-temperature superconductors istudies®®® of the gap suppression in the vicinity of an im-
proportional to the observed incommensurabifif in the ~ purity at zero magnetic field are suggestive of a rather short
low-energy spin structure factor. The magnetic incommensucoherence length. While the experimental results are, by no
rability «/d is inversely relatet?*” to the mean separation Means, definitive, we would tentatively like to explain the
between charge “stripesd. Thus the Yamada plot implies discrepancy between the STM ap®R results at low field
that T, is inversely proportional to the mean spacing betweerS evidence o_f the existence of two coherence lengths in the
stripes: as the stripes become more separated, and the el§tPerconducting state. .
tronic structure becomes more one dimensiongh>0. This (iv) It ha:s be_en realized fc_)r a long time that there are no
observation strongly supports the idea that the anomalou%ha‘rp quaS|pe'1rt|cIe featurgs in the ARPES lspectrum n.ear the
electronic properties of these materials reflect the propertiedUPerconducting gap maximumear theM point of the Bril-
of nearby phases of the 1DEG. Indeed, many of the spectrfUin Zone in the normal state, and it has been argtiedat
features listed above have been observed, with various levelg€Y disappear due to a lifetime catastrrfi)gh_e which occurs as
of confidence, in experiments on the high-temperature supeF- e temperature Is ralsed. abo‘l?@. Recent hlghjresolutlon
conductors: ﬁRPES melazuremer?t? in ?'ptlmalli/ dOp?C:Z;B’tCaCLéog f
. . . , ave revealed a an interesting picture of the emergence o
.(') The t_>est single particle spec_(r;&RPES and t_unnehr}g these peaks. Within experimegtgl resolution, neithe?the en-
exist for B,Sr,CaCyOg because it cleaves easily. For un- ergy nor the width of the peak changes as the temperature is
derdoped and optimally doped materials, the single-particl

! X Faised from well belowr . to slightly aboveT,; rather, it is
gap as measured by tunneling and ARRRS. 48 is found o intensity of the peak that is strongly temperature depen-

to be larged,=35 meV, in the “flat-band” region near the et in the neighborhood of,. The intensity vanishes
M, or (m,0) and (Or), points of the Brillouin zone.£o/2T.  slightly aboveT, without any apparent change in the shape
lies in the range 2 to 6. Thi region is where the maximum of the peak itself. Indeed, the sharp temperature dependence
of a d-wave superconducting gap is expectedihe gap of this intensity in the neighborhood @f; is consistent with
persisté® in some form or other to temperatures well aboveits being proportional to a fractional power of tfffocal)
T.. Moreover,A, increases with underdoping while, de-  superfluid density[see Eq. (75] or from a different
creases. This gap is quite clearly a superconducting gap iperspectiv® to a fractional power of the condensate fraction
that it has(at low T) the characteristid-wave form® ex-  [see Eq.(51)]. Additional evidence for this comes from an
pected of the superconducting gap, and it evolvemoothly  old observation of Harrigt al®3 that, as a function of under-
with overdoping into a gap of only slightly smaller magni- doping, the weight in the peak at low temperatures decreases
tude which opens, in a more conventional manner, in thevith decreasing superfluid density. Moreover, Shen and
neighborhood off .. (We focus on the gap near thé point, ~ Balatsky** have argued that a small dispersion of the ARPES
especially, because there are both theoréficand Peak in the direction perpendicular to the putative stripe di-
experimentaf reasons to think that the “flat-band” region is "ection scales more or less wil, consistent with our Eq.
associated with states in “stripes” or “fluctuating stripes.” (61). The distance between the coherent peak and the dip
Moreover, as discovered by Uemura and co-workeFs,is  feature in ARPES curves near the point® decreases with
roughly proportional to the zero-temperature superfluid denunderdoping, consistent with the zero- temperature distance
sity for underdoped materials, consistent with the ndtion being proportional tor .
that it is phase ordering, not pairing, which determiiigs A similar temperatureevolution has been observed for the
(i) Deutschet* has argued that the gap scale determinedso called “resonant peak” in neutron scattefingn
by low-temperature Andreev tunneling spectroscopy is conYBa,Cu;O;_ s and BpSr,CaCyOg (although no such fea-
siderably smaller than that determined from single-particleure has been se¥hin La,_,Sr,CuQ,). We would like to
tunneling measurements in underdoped materials, while thielentify this phenomenon, as well, with a dimensional cross-
two gap scales approach each other in overdoped materialsver of the sort discussed here. However, the spin resonance
This issue is well worth revisiting in more detail. The single- we have found in the present model is clearly not directly
particle gap scale is strongly apparénin SIS tunneling related to the observed resonant peak. In particular, all fea-
spectra—we do not know of any convincing analysis whichtures we have found are peaked at a momentim, 2vhile
reveals the smaller charge gap scale in such experiments. the resonant peak is centered on the antiferromagnetic wave
(iii) The vortex core radius has been measured with botlector (7, 7). Moreover, the peak we have found disappears
scanning tunneling microscopy?’ (STM) and ©SR* The  through a lifetime catastrophe well beldly, while the reso-
1SR study measures the magnetic-field distribution in thenant peak is sharp immediately beloly. Clearly, at the
material, and infers the core radius from the high-field cutoffvery least, to have a theory with anything more than a very

C. Two scales in the high-temperature superconductors
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rough caricature of this observed magnetic behavior, we Bs~2¢o/ EW, (77
need to expand the considered model to include the effects of ) . .
the antiferromagnetic “strips” between the “stripes.” at which orbital effects lead to the destruction of the spin

gap. Herew is the “width” of a stripe—i.e., the width of the
1d region involved in spin gap formation. In the “spin gap
proximity effect” mechanisi? proposed previously this

Finally, we end with a few additional observations con-would imply thatw is one to two times the crystalline lattice
cerning insights into the behavior of the high-temperatureconstant. The extremely large value Bf rationalizes the
superconductors that can be obtained from the analysis d&ck of any observable reduction of the spin gap temperature
this paper: in the recent NMR experiments of Gorey al.”? up to fields

In the superconducting state of a structurally quasi-1Das high as 12 T in YB&Zu;0;_ 5. (See, also, the discussion
superconductor, we have found there are two emergenh Ref. 73)
length scalesés and &, . If the quasi-1D electronic structure One important difference between a stripe phase and the
is self-organized, as it is in the high-temperature superconarray of chains studied here, is that in the stripe phase there
ductors, there are potentially two additional emergent lengtlare additional electronic degrees of freedom which live in the
scale®” the mean spacing between stripgsand the persis- antiferromagnetic strips between the stripes. The two-
tence length of the stripeggipe. d can be determined di- component nature of the electronic structure of doped
rectly from the charge incommensurabifff® (or  antiferromagneté! is characteristic of the microphase sepa-
indirectly*®#’ from the spin structure factorégipe is much  ration physics that gives rise to this state. Of course, the
harder to determine experimentally, although it is boundedntiferromagnetic ~ strips are themselves quasi-one-
below by the correlation length of the magnetic orfef°So  dimensional magnets,so that any magnetic ordering must
long aséyipe is the longest length scale in the problem, i.e.,be viewed, in similar spirit to that considered here, as result-
S0 long astgyipe> &, it is possible to assume, as we haveing from a dimensional crossover. Indeed, it is certainly the
here, that the superconducting properties of the system agpins in the insulating strips that make the dominant contri-
quasi-one-dimensional. Where this inequality is violated, théution to the “resonant peak” observed in neutron scatter-
correct theory of the superconducting state needs to be sigRg. A detailed theory of this peak is beyond the scope of the
nificantly modified. As was pointed out previousfso long  present model, but is embodied in the spin gap proximity
as the weaker conditiortsipe> &5, is satisfied, it is pos- effect
sible to have a one-dimensional theory of spin gap forma- However, we have found an additional neutron scattering
tion. At present experiments are unclear about the range gesonance for a quasi-one-dimensional superconductor.
doping and materials for which either of these inequalities igNVhile the dimensional crossover causes no bound state in the
satisfied, which is the most important source of uncertaintyspin-1 excitations, we find a resonant state of two spin-
in the application of these ideas to the high-temperature sujuasiparticles appearing beldw=0.4T .. The mode appears
perconductors. Certainly, with sufficient overdoping, theat an energy 2,+A.=2A,, or twice the single-particle gap
stripes lose their integrity and the application of these ideags measured by ARPES or tunneling, and at momentum
becomes suspect. 2ke , wherekg defines the Fermi surface associated with a

To get a feeling for magnitudes, we can make roughstripe. Since this is a four soliton resonance, it may be quali-
guantitative estimates of the remaining length scales frontatively sensitive to deviations from the lim <A, so
well-established experimental data in the high-temperaturthat the resonance is likely to be most well defined in the
superconductors, although numbers vary from material tainderdoped region whefB.<Ay,.
material, and as a function of doping concentratorThe Finally, we remark that the ARPES spectrum along the
spin velocity in the undoped antiferromagnet is arouRd symmetry direction fron{0,0) to (w, ), i.e., along the ray
~0.8 eV A, and the superconducting gaplig~35 meV, so  which is expected to pass through the node dfwave gap

¢5~20 A. The charge coherence length.=£s(ve/  function, is very different in character from that in thethat
v)(As/Ac), so if we estimatev./v~t/J~2-3 andA;  we have discussed. In clean samples of optimally doped
~2T.~16 meV, we find that characteristically~100-150  Bi,Sr,CaCyQs, there is a pedk'’’ in the spectral function

A. (This is in good agreement with theSR measuremett  both above and below,, and the peak reaches the Fermi

of the vortex core radius cited aboy&he spacing between suface at a well defined “nodal point,” |Zn

stripes is in the range of four or more lattice constadits, = (0.447,0.447). This peak does not exhibit the character-
~16 A. . _ o istics of a quasiparticle pedk,in that its width is always

A crpsgtl)ver magnetic field, which can be identified as §ger than its energy; indeed, it seems to exhibit quantum
mean field" By, can be estimated as the field at which therejtica| pehavior reminiscent of a Luttinger liquid. Moreover,

is one vortex per coherence lengih between each pair of here is no qualitative chanfein the temperature evolution

D. Further implications for high-temperature superconductors

neighboring stripes; this leads to an estimate of this peak as the temperature is lowered from two or three
timesT,. down to temperatures as low as at leastT/2 the
Beo~ dolé.d, (76) character of the nodal excitation seems to be remarkably in-

sensitive to the onset of superconductivity. By contrast, in
where ¢o=hc/2e is the superconducting flux quantum. optimally doped La_,Sr,CuQthere is apparentf§ no ob-
While B, estimated in this fashion is quite large{/&.d servable peak along the nodal direction, and indeed little or
=80T for d=16 A and&,=100 A) it is small compared to no spectral weight within about 0.5 eV of the Fermi energy.
the characteristic magnetic field, Indeed, recent neutron-scattering stuffies the low-energy
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magnetic Scattering in the neighborhood dfnzhave re- with the differences that the Fermi VelOCity is replaced by the

vealed the existence of a clean spin gap at low temperaturesslowen spin velocity, the superconducting gap is the sum of

which is apparently inconsistent with the existence of anythe (single-chain spin gap and théinterchain charge gap,

gapless nodal quasiparticle excitations. and the interchain bandwidth is reduced by the quasiparticle
It is clear that whatever spectral response is observed ne¥€ight factorZ.

k, is not associated with the vertical and horizontal stripes

studied here, because a stripe wave vector does not span thAPPENDIX B: MACROSCOPIC SUPERFLUID DENSITY
“Fermi surface” along this direction. It could be associated . . . .
with diagonal stripes, which have been observed recently in In this app?‘”d" we compute the macroscopic Phﬁse stiff-
various insulating materiaf¢*in which case the observed ness(superfluid density tensorK,[ «] in two dimensions
quantum critical behavior might truly be that of a Luttinger (8=%:¥) given a microscopic distribution of thign general
liquid. An alternative picture is backflow associated with anisotropi¢ local phase stiffness tensar(r). We include
holes that have not condensed into vertical or horizontathe derivation here for pedagogical purposes, although the
stripes. Both explanations are conceivable as there are strofigsults exist elsewhere in the literatre.

reasons to expect that the orienting potential, which locks the « determines the relation between the local current den-
stripes along a particulafvertical or horizontal crystallo-  sity, j(r) and the gradient of the phase according to
graphic direction to be stronger in La,Sr,CuQ, than in

Bi,Sr,CaCy0Og. However, other sources of quantum critical §2(1) = Kapdp (7). (B1)
behavior are certainly possibié We will defer further dis-

cussion of these classes of excitations to a future study.  From the equation of continuity, it follows that- =0, so

we can expres$ in terms of a potentialj ,(r) = epdp#(r),
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APPENDIX A: THE EFFECT OF INTERCHAIN Kl k]1=A¢lA 6. (B3)
SINGLE-PARTICLE HOPPING

) ) ) ) ) The key observation is the same potential and phase that
Until now, we have ignored single-particle hopping be'satisfy Eq.(B3), also satisfy the dual equation
tween chains. This is because, especially in the presence of a
spin gap, it is irrelevant in the renormalization-group sense. - -
However, in the superconducting state, we expect the quasi- €andb0(1) = Kapdop(T), (B4)
particles to be able to propagate coherently between chains,
! ; Where
Because these terms are irrelevant, their effects on the spec-
trum can be computed in ordinary degenerate perturbation - -
theory. It is easy to see that to first order in the interchain Kap(l) = €ackcq (T)€dp- (BS)

hopping, the quasiparticle energy is

Therefore
E(K) =\ 2kf+ A5+ Z(k) (k) +0(e1)?, (A1) S
_ ) ) . o K €]Kyy[ €7]=1. (B6)
wheree)(k,)=2t, cosk, a) is the interchain contribution
to the quasiparticle dispersion, akgt kg and IZl are, re- We can apply this general result to the problem of interest
spectively, the components of the crystal momentum paralléhere. Consider the case of a square geometry in which, be-
and perpendicular to the chain direction. cause of some assumed domain structure, the system is mac-

This is highly reminiscent of the spectrum we would havergscopically isotropic k=K ,,= K,y) despite the existence

obtained were we to compute the spectrum of a quasi-onesf microscopic anisotropy in each “stripe” domain. It fol-
dimensional superconductor using BCS mean-field theory |ows that

(BCY _ Wy 12 2 _ _
£870 = lvek+e(k) P+ A (ke i) 1Ly, L, ) =1. (B7)

— ¢(BCY (BCY7 (L) (K (L))2 —
E ol E TPk, ) +O(e)7, It follows that x(x, )=k, k. Other solutions to Eq.
(A2) (B7) exist, but are not homogeneous functions.
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APPENDIX C: THE EFFECTIVE POTENTIAL  v(x) carried out previously to study various solitonic states in the

: 2,34 H
To compute the effective potential which appears in Eq.Su—Schrleffer—Heeger model of polyacetylehé™>" with

(62), we consider the discrete version of the refermionized®Pe" boundary conqmons, the Hamiltonian matnx_ Is tridi-
Hamiltonian® agonal, and so particularly simple to study numerically for

large system sizes. We have carried out this program numeri-
_ N + cally for system sizes up toNP= 3000, and foA.,=0.2, 0.1,
H——En: [tot+ (= 1)"A(n)/2][eaCratH.Cl, (€D 05 and 0.02: the continuum limit is obtained whap
—0. Even for the smallest values Af,, we find no signifi-
wherev.=2t, and cant finite-size effects at these large system sizes. The results
_ 2 2 for v(x) computed in this way are summarized in Fig. 1. The
A(n)=A4csgr(R"—4n"), (€2 fact that the asymptotic value ofis always slightly negative
corresponding to a pair of solitons separated by a distBnce is a reflection of the fact that in the limit of small soliton
(We have set the lattice constant equal tp 1. width (which is equal to 1, the lattice constant, in the present
We compute the ground-state energy on a systemhbf 2 calculation, the soliton creation energy is a very strongly
sites by computing the single-particle eigenvalues, and thewarying function of the width, as found previously by
summing over the lowest lyin— 1 of them to get the total Takayama, Lin-Liu, and Maki® and only approaches its true
energy as a function oR. This is precisely the program asymptotic limitA./2, when 1£. is extremely small.
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